中国有色金属学报(英文版), 2017, 27(1): 227-233.
10.1016/S1003-6326(17)60026-8
不同热流模式下快速凝固Cu-Co不混溶合金枝晶-分相结构的转变

李圣 1, , 刘峰 2, , 杨伟 3,

1.西北工业大学 凝固技术国家重点实验室,西安,710072;
2.西北工业大学 凝固技术国家重点实验室,西安,710072;
3.南昌航空大学 航空制造工程学院,南昌,330063

综合采用熔融玻璃净化、铜模喷铸及单辊旋淬技术,对比研究不同过冷度、不同冷速作用下 Cu?Co 不混溶合金的快速凝固行为。通过对凝固发生时的热流方式、形核及生长过程的分析,阐述合金非平衡组织由枝晶到分相结构的转变及其相应尺寸的变化规律。随过冷度增加,不混溶效应的增强导致柱状枝晶向分相结构转变。由于铜模喷铸时发生多点形核,凝固组织呈现为等轴枝晶并随冷速增加而不断细化。当喷铸试棒直径为4 mm时,不混溶效应形成的液滴由于长大不充分最终形成细小粒状分相组织。单辊旋淬薄带由于冷速最高,凝固过程瞬间完成,可有效抑制液相分离的发生,有利于胞状单相固溶体组织的形成。
引用: 李圣, 刘峰, 杨伟 不同热流模式下快速凝固Cu-Co不混溶合金枝晶-分相结构的转变. 中国有色金属学报(英文版), 2017, 27(1): 227-233. doi: 10.1016/S1003-6326(17)60026-8
参考文献:
[1] F. Liu;G. C. Yang.Rapid solidification of highly undercooled bulk liquid superalloy: recent developements, future directions[J].International Materials Reviews,20063(3):145-170.
[2] Liu, N.;Yang, G.C.;Yang, W.;Liu, F.;Yang, C.L.;Zhou, Y.H..Microstructure evolution of undercooled FeCoCu alloys[J].Physica, B. Condensed Matter,20114(4):957-962.
[3] S.B. Luo;W.L. Wang;J. Chang.A comparative study of dendritic growth within undercooled liquid pure Fe and Fe_(50)Cu_(50) alloy[J].Acta materialia,2014:355-364.
[4] 王立东;李雪松;王超;王立民;曹占义.冷却速率对铸造Mg-1Zn-0.5Ca合金耐生物腐蚀性和力学性能的影响[J].中国有色金属学报(英文版),2016(3):704-711.
[5] 田泽安;周丽丽;莫云飞;梁永超;刘让苏.液态金属锌快速凝固过程中冷速对多晶形选择的影响[J].中国有色金属学报(英文版),2015(12):4072-4079.
[6] Wang, Haifeng;Galenko, P. K.;Zhang, Xiao;Kuang, Wangwang;Liu, Feng;Herlach, D. M..Phase-field modeling of an abrupt disappearance of solute drag in rapid solidification[J].Acta materialia,2015:282-291.
[7] Yang, W.;Xu, Z.F.;Li, W.J.;Cai, C.C.;Li, S.;Liu, F.;Yang, G.C..Comparisons of grain refinement and recalescence behavior during the rapid solidification of undercooled CuCo and CuNi alloys[J].Physica, B. Condensed Matter,201119(19):3710-3714.
[8] Palumbo M;Curiotto S;Battezzati L.Thermodynamic analysis of the stable and metastable Co-Cu and Co-Cu-Fe phase diagrams[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20062(2):171-178.
[9] C. D. Cao;D. M. Herlach;M. Kolbe;G. P. Gorler;B. Wei.Rapid solidification of Cu_(84)Co_(16) alloy undercooled into the metastable miscibility gap under different conditions[J].Scripta materialia,20031(1):5-9.
[10] M. Kolbe;J.R. Gao.Liquid phase separation of Co-Cu alloys in the metastable miscibility gap[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20050(0):509-513.
[11] X.Y. Lu;C.D. Cao;M. Kolbe.Microstructure analysis of Co-Cu alloys undercooled prior to solidification[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20040(0):1101-1104.
[12] Yang, W.;Chen, S.H.;Yu, H.;Li, S.;Liu, F.;Yang, G.C..Effects of liquid separation on the microstructure formation and hardness behavior of undercooled Cu-Co alloy[J].Applied physics, A. Materials science & processing,20123(3):665-671.
[13] 杨长林;李远兵;党波;吕贺宾;刘峰.凝固冷却速率对铸态A356铝合金固溶热处理的影响[J].中国有色金属学报(英文版),2015(10):3189-3196.
[14] Rathz TJ.;Li D.;Workman GL.;Williams G.;Robinson MB..Study of the containerless undercooling of Ti-Ce immiscible alloys[J].Journal of Materials Science,20015(5):1183-1188.
[15] Li JF.;Yang GC.;Zhou YH..Solidification behavior of undercooled Cu70Ni30 alloy melt[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20001/2(1/2):161-168.
[16] M. B. Robinson;D. Li.Undercooling, liquid separation and solidification of Cu-Co alloys[J].Journal of Materials Science,199915(15):3747-3753.
[17] Michiaki Yamasaki;Shogo Izumi;Yoshihito Kawamura;Hiroki Habazaki.Corrosion and passivation behavior of Mg-Zn-Y-Al alloys prepared by cooling rate-controlled solidification[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,201119(19):8258-8267.

相似文献: