欢迎登录材料期刊网

材料期刊网

高级检索

在大气环境中,对Mg-Zn-Al钎料进行超声振动作用下的铺展,超声时间分别为1,2,3,4s,并与钎剂作用下的钎料铺展行为进行对比。采用体视显微镜观察钎料在超声及钎剂作用下的铺展形貌。采用光学显微镜观察钎料铺展初始端、铺展末端及铺展后钎料的微观组织形貌。结果表明:超声振动作用下的Mg-Zn-Al钎料沿基体表面作受迫铺展,声空化作用于液态钎料产生的冲击波可以破碎基体表面的氧化膜,使液态钎料与母材发生润湿,母材溶解的深度仅有0.12mm。超声时间为2s时,钎料铺展面积最大。超声声空化作用破碎液态钎料在凝固期间产生的α-Mg固溶相及Mg-Zn共晶相,使铺展后的钎料显微组织得到细化。

The spreading and wetting behavior of Mg-Zn-Al solder under the action of flux and ultrasonic vibration was conducted in atmosphere. The ultrasonic vibration time was 1, 2, 3, 4s, respectively. The spreading morphology and microstructure of the solder was investigated by optical microscope. The results show that the Mg-Zn-Al solder is forced spread under the effect of ultrasonic vibration along the base metal. The impact wave induced by ultrasonic cavitation can break the oxide film on the surface of base metal and the solder, which can promote the solder to wet the base metal. The depth of the dissolved base metal is only 0.12mm. When the ultrasonic time is 2s, the spreading area reaches its maximum. The ultrasonic cavitation can break the columnar crystals of Mg-Zn eutectic phase and the dendrite crystals of α-Mg, which can refine the microstructure of the Mg-Zn-Al solder.

参考文献

[1] DIEM W. Magnesium in different applications[J]. Auto Technology, 2001, 1(1):40-41.
[2] MORDIKE B L, EBERT T. Magnesium properties-application-potential[J]. Materials Science and Engineering:A, 2001, 302, 37-45.
[3] DIOBRZAŃSK L A, TAŃSKI T, ČÍŽEK L, et al. Structure and properties of magnesium cast alloys[J]. Journals of Materials Processing Technology, 2007, 192-193:567-574.
[4] WIELAGE B, MUCKLICH S. Improving the soldering of magnesium alloys[J]. Welding Journal, 2006, 85(9):48-51.
[5] FENG J C, WANG Y R, ZHANG Z D. Status and expectation of research on welding of magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(2):165-178.
冯吉才, 王亚荣, 张忠典.镁合金焊接技术的研究现状及应用[J].中国有色金属学报, 2005, 15(2):165-178.
[6] VENUGOPALAN H, DEBROY T. Kinetics of directed oxidation of Al-Mg alloys into Al2O3 preforms[J]. Materials Science and Engineering:A, 1997, 232(1-2):39-46.
[7] CZERWINSKI F. The oxidation behaviour of an AZ91D magnesium alloy at high temperatures[J]. Acta Materialia, 2002, 50:2639-2654.
[8] WATANABLE T, KOMATSU S, YANAGISAWA A et al. Development of flux and filler metal for brazing magnesium alloy AZ31B[J]. Quarterly Journal of the Japan Welding Society, 2005, 22(3):163-167.
[9] BOBZIN K, LUGSCHEIDER E, ERNST F, et al. A look at the development of magnesium-based filler metals[J]. Welding Journal, 2008, 87(3):68-40.
[10] JACOBON D M, HUMPSTON G. Fluxless soldering[J]. International Material Reviews, 2006, 51(5):313-327.
[11] VIANCO P T, HOSKING F M, REJENT J A. Ultrasonic soldering for structural and electronic applications[J]. Welding Journal, 1996, 75(11):343-355.
[12] WIELAGE B, MUCKLICH S, GRUND T. Corrosion behaviour of soldered joints of magnesium alloys and dissimilar materials[J]. Microchimica Acta, 2007, 156:151-157.
[13] MUECKLICH S, FRITSCHE G, WIELAGE B. Amorphous filler metals offer great potential for joining magnesium alloys[J]. Welding Journal, 2008, 87(3):31-33.
[14] YAN J C, XU Z W, LEI S, et al. Ultrasonic assisted fabrication of particle reinforced bonds joining aluminum metal matrix composites[J]. Materials and Design, 2011, 32:343-347.
[15] FARIDI H R, DEVLETIAN J H, LE H P. A new look at flux free ultrasonic soldering[J]. Welding Journal, 2000, 79(9):41-45.
[16] NAGAOKA T, MORISADA Y, FUKUSUMI M, et al. Joint strength of aluminum ultrasonic soldered under liquidus temperature of Sn-Zn hypereutectic solder[J]. Journal of Materials Processing Technology, 2009, 209:5054-5059.
[17] CAMPBELL J. Effects of vibration during solidification[J]. International Metals Reviews, 1981, 26(2):71-108.
[18] JIAN X, XU H, MEEK T T, et al. Effect of power ultrasonic on solidification of aluminum A356 alloy[J]. Materials Letters, 2005, 59(2-3):190-193.
[19] XUE S B, CHEN W H, LV X C, et al. Mechanism of brazing flux reacting with oxide film of LY12 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(4):543-547.
薛松柏, 陈文华, 吕晓春, 等. LY12铝合金氧化膜与钎剂的反应机制[J].中国有色金属学报, 2004, 14(4):543-547.
[20] LANDRY K, EUSTATHOPOULOS N. Dynamics of wetting in reactive metal/ceramic system:linear spreading[J]. Acta Mater, 1996, 44(10):3926-3932.
[21] ESKIN G I. Broad prospects for commercial application of ultrasonic (cavitation) melt treatment of light alloys[J]. Ultrason Sonnochem, 2001, 8(3):319-325.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%