欢迎登录材料期刊网

材料期刊网

高级检索

为解决常规方法制备TC轴承带来的磨损不均问题,提高TC轴承服役寿命,采用激光增材制造方法在钢制零件基体表面制备耐磨涂层。选用两套不同工艺参数分别在TC轴承内轴套外圆、外轴套内孔进行Cr3C2/Fe基耐磨材料的激光熔覆,获得了无气孔、裂纹且冶金质量优良的耐磨涂层。采用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)检测分析手段进行形貌观察、成分分析、物相表征,并使用数字显微硬度计、摩擦磨损试验机、盐雾腐蚀实验箱分别对熔覆层进行硬度、耐磨性和耐腐蚀性进行测试。结果表明:TC轴承耐磨涂层的平均显微硬度为HV700,耐磨性为Ni60涂层的3倍,耐腐蚀性接近于316L不锈钢。

In order to solve the problem of uneven wear of TC bearing that conventional method brought and improve its service life, wear-resistant coating was fabricated on the surface of steel parts matrix with the method of laser additive manufacture. The Cr3C2/Fe based alloy was deposited by laser cladding technique on the inner-sleeve cylindrical and outer-sleeve bore of TC bearing with two different process parameters. The high-performance coating was obtained respectively, of cracks free, no pores and with good metallurgical quality. The morphology of the laser cladding coating was observed by scanning electronic microscope (SEM), the composition was analyzed by EDS, the phase transformation was characterized by XRD. The wear resistance, corrosion resistance and hardness of the laser cladding layer were tested by friction and wear tester, salt spray test chamber and digital micro-hardness tester respectively. The results show that the average micro-hardness of composite coating is HV700. The wear resistance of the composite coating is about 3 times as much as the Ni-based alloy. The corrosion resistance is close to 316L stainless steel.

参考文献

[1] YANG B D, FAN C Y, WU Z M, et al. Research on the TC bearing of screw drill[J]. China Petroleum Machinery, 1992, 20(6):1-4.
杨宝德, 范传友, 吴志明, 等.螺杆钻具TC轴承的研制[J].石油机械, 1992, 20(6):1-4.
[2] ZHANG D W, LEI T Q, TIAN G F. Laser cladding and its applications in the petroleum machinery[J]. Journal of Daqing Petroleum Institute, 1997, 21(4):60-64.
张大伟, 雷廷权, 田贵富.激光熔覆及其在石油机械中的应用现状[J].大庆石油学院学报, 1997, 21(4):60-64.
[3] XU F D, ZHANG X D, SUN H P. Theoretical research of contact problem in TC bearing in down hole motor[J]. Oil Field Equipment, 2004, 33(6):21-24.
许富东, 张晓东, 孙华鹏.井下动力钻具用TC轴承接触问题的理论研究[J].石油矿场机械, 2004, 33(6):21-24.
[4] QIU X W, LI G, QIU L. The latest development and prospects of laser cladding technology[J]. Rare Metals and Cemented Carbides, 2008, 36(3):54-58.
邱星武, 李刚, 邱玲.激光熔覆技术发展现状及展望[J]稀有金属与硬质合金, 2008, 36(3):54-58.
[5] ZHANG D, SHAN J G, REN J L. Status and development of cladding with high power density beam[J]. Laser Technology, 2001, 25(1):39-42.
张迪, 单际国, 任家烈.高能束熔覆技术的研究现状及发展趋势[J].激光技术, 2001, 25(1):39-42.
[6] NURMINEN J, NÄKKI J, VUORISTO P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding[J]. Journal of Refractory Metals & Hard Materials, 2009, 27(2):472-478.
[7] YUAN Q L, FENG X D, CAO J J, et al. Research progress in laser cladding technology[J]. Materials Review, 2010, 24(2):112-116.
袁庆龙, 冯旭东, 曹晶晶, 等.激光熔覆技术研究进展[J].材料导报, 2010, 24(2):112-116.
[8] LI Y L, JIN H X, LIN S Z, et al. Research progress and development trend of laser cladding technology[J]. Heat Treatment Technology and Equipment, 2009, 30(4):1-5.
李养良, 金海霞, 林树忠, 等.激光熔覆技术的研究现状与发展趋势[J].热处理技术与装备, 2009, 30(4):1-5.
[9] QU X H, ZHANG G Q, ZHANG L. Applications of powder metallurgy technologies in aero-engines[J]. Journal of Aeronautical Materials, 2014, 34(1):1-10.
曲选辉, 张国庆, 章林.粉末冶金技术在航空发动机中的应用[J].航空材料学报, 2014, 34(1):1-10.
[10] WANG Y H, TU D L, CUI L S. The ceramic phases in metal/ceramic composite coatings produced by laser cladding and their wear mechanism[J]. China Surface Engineering, 1998, 11(4):29-33.
[11] PEI Y T, OUYANG J H, LEI T Q. Development of laser clad wear resistant composite coatings[J]. Materials Review, 1996, 10(1):60-63.
[12] WU X J, XING J D, FU H G, et al. Effect of titanium on the morphology of primary M7C3 carbides in hypereutectic high chromium white iron[J]. Materials Science and Engineering, 2007, 457(1-2):180-185.
[13] BEDOLLA-JACUINDE A, CORREA R, QUEZADA J G, et al. Effect of titanium on the as-cast microstructure of a 16% chromium white iron[J]. Materials Science and Engineering, 2005, 398(1-2):297-308.
[14] LEIKO A, NAVARA E. Microstructural characterization of high-carbon ferrochromium[J]. Materials Characterization, 1996, 36(4-5):349-356.
[15] WU C F, MA M X, LIU W J, et al. Laser producing Fe-based composite coating reinforced by in situ synthesized multiple carbide particles[J]. Materials Letters, 2008, 62(17-18):3077-3080.
[16] WANG Z H, ZHAO X F, HE D Y, et al. Microstructure and properties of plasma cladding Fe-based wear-resisting alloy containing submicron NbC[J]. Journal of Materials Engineering, 2015, 43(7):73-79.
王智慧, 赵雪飞, 贺定勇, 等.等离子熔覆含亚微米碳化妮铁基耐磨合金组织与性能的研究[J].材料工程, 2015, 43(7):73-79.
[17] LI S, HU Q W, ZENG X Y. Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer[J]. Applied Surface Science, 2005, 240(1-4):63-70.
[18] WANG X H, ZHANG M, LIU X M, et al. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding[J]. Surface and Coating Technology, 2008, 202(15):3600-3606.
[19] DU L Z, HUANG C B, ZHANG W G, et al. Preparation and wear performance of NiCr/Cr3C2-NiCr/hBN plasma sprayed composite coating[J]. Surface and Coating Technology, 2011, 205(12):3722-3728.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%