欢迎登录材料期刊网

材料期刊网

高级检索

为了研究定向凝固高温合金不同取向氧化前后的常温腐蚀性能,选择镍基高温合金DZ125和钴基高温合金DZ40M在1050℃下进行不同时间的短时氧化,研究合金不同取向的氧化行为;对氧化前后合金在3.5%NaCl溶液中进行电化学实验,研究氧化对定向凝固高温合金不同取向常温腐蚀性能的影响。结果表明:定向凝固高温合金晶界或亚晶界附近容易发生局部腐蚀,纵截面晶界和亚晶界面积分数小,因此耐蚀性优于横截面;与合金横截面相比,纵截面晶界结构不利于扩散,故其氧化速率小于横截面;短时氧化后在合金表面生成分层结构的氧化物,对合金起到保护作用,一定程度上提高耐蚀性。

In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

参考文献

[1] ZHOU Y, ZHANG Z, ZHONG Q P, et al. Development of rejuvenation process for creep damage of turbine blades[J]. Transactions of Materials and Heat Treatment, 2012, 33(12):1-7.
周煜, 张峥, 钟群鹏, 等.涡轮叶片蠕变损伤的恢复处理研究进展[J].材料热处理学报, 2012, 33(12):1-7.
[2] KAFTELEN H, BALDAN A. Comparative creep damage assessments using the various models[J].Journal of Materials Science, 2004, 39(13):4199-4210.
[3] GU Y L, TENG X D, TAO C H, et al. Microstructures and ultra-high cycle fatigue behaviors of directionally solidified superalloy DZ125 after long-term aging[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2136-2142.
顾玉丽, 滕旭东, 陶春虎, 等.DZ125定向凝固高温合金长期时效后的显微组织和超高周疲劳行为[J].航空学报, 2012, 33(11):2136-2142.
[4] LIU C K, ZHANG B, TAO C H, et al. Recrystallization behavior of directionally solidified DZ125 superalloy[J]. Failure Analysis and Prevention, 2009, 4(3):129-132.
刘昌奎, 张兵, 陶春虎, 等.DZ125定向凝固合金的再结晶行为研究[J].失效分析与预防, 2009, 4(3):129-132.
[5] HU X H, ZHANG A F, GE J B, et al. Effects of heat treatment on microstructure and micro-hardness of laser metal forming DZ125 superalloy[J]. Journal of Materials Engineering, 2013, (2):12-16.
胡小华, 张安峰, 葛江波, 等.热处理对激光金属成形DZ125L高温合金组织及硬度的影响[J].材料工程, 2013, (2):12-16.
[6] ZHAO Y. Recrystallization behavior of a directionally solidified Co-base superalloy DZ40M[D]. Shenyang:Northeastern University, 2008.
赵阳.定向凝固钴基高温合金DZ40M的再结晶行为[D].沈阳:东北大学, 2008.
[7] 濮晟.DZ40M高温合金的再结晶及其对合金力学性能的影响[D].南京:南京航空航天大学, 2007.
濮晟.DZ40M高温合金的再结晶及其对合金力学性能的影响[D].南京:南京航空航天大学, 2007.
[8] ZHAO Y, YU T, LIU Y, et al. Effects of recrystallization on the low cycle fatigue behavior of directionally solidified superalloy DZ40M[J]. Rare Metals, 2008, 27(4):425-428.
[9] MENG X L. Microstructure and creep properties of DZ125 superalloy[D]. Shengyang:Shenyang University of Technology, 2013.
孟宪林.DZ125合金的组织结构与蠕变性能[D].沈阳:沈阳工业大学, 2013.
[10] GU Y L, TAO C H, HE Y H, et al. Ultrasonic fatigue behavior of directionally solidified superalloy DZ125[J]. Failure Analysis and Prevention, 2011, 6(2):85-89.
顾玉丽, 陶春虎, 何玉怀, 等.DZ125定向凝固高温合金的超声疲劳行为研究[J].失效分析与预防, 2011, 6(2):85-89.
[11] XIA P C, GUAN H R, HU Z Q, et al. Thermal fatigue properties of DZ40M alloy[J]. Rare Metal Materials and Engineering, 2011, 40(1):152-155.
夏鹏成, 管恒荣, 胡壮麒, 等.DZ40M合金的热疲劳性能[J].稀有金属材料与工程, 2011, 40(1):152-155.
[12] JIANG W H, GUAN H R, HU Z Q. High temperature low cycle fatigue of DZ40M cobalt-base superalloy[J]. Acta Metallurcica Sinica, 1998, 44(4):378-383.
姜文辉, 管恒荣, 胡壮麒.DZ40M合金高温低周疲劳性能及其断口分析[J].金属学报, 1998, 44(4):378-383.
[13] QIN L, GONG S K, XU H B, et al. Inter-diffusion behavior of recoated CoCrAlY coating/DZ125 directionally solidified superalloy[J]. Acta Metallurgica Sinica, 2013, 49(2):229-235.
秦磊, 宫声凯, 徐惠彬, 等.DZ125合金再涂覆CoCrAlY涂层界面互扩散行为研究[J].金属学报, 2013, 49(2):229-235.
[14] ZHANG P F, LI J P, LU F, et al. High temperature resistance of Al-Si coating on DZ40M superalloy[J]. Journal of Aeronautical Materials, 2010, 30(5):63-66.
张鹏飞, 李建平, 陆峰, 等.DZ40M合金Al-Si涂层高温防护性能研究[J].航空材料学报, 2010, 30(5):63-66.
[15] HE Q, WANG R J, WANG W P. Gas hot-corrosion resistance of nanostructure and segmentation thermal barrier coatings on DZ40M superalloy[J]. Journal of Materials Engineering, 2014, (5):66-72.
何箐, 汪瑞军, 王伟平.DZ40M合金表面纳米和垂直裂纹结构热障涂层的抗燃气热腐蚀性能[J].材料工程, 2014, (5):66-72.
[16]
[17] LIU P S, CHEN G F, LIANG K M. High temperature oxidation of DZ40M alloy[J]. Journal of Chinese Society for Corrosion and Protection, 1999, 19(6):19-24.
刘培生, 陈国锋, 梁开明.DZ40M钴基合金的高温氧化[J].中国腐蚀与防护学报, 1999, 19(6):19-24.
[18] AGRAWAL P M, RICE B M, THOMPSON D L. Predicting trends in rate parameters for self-diffusion on FCC metal surfaces[J]. Surface Science, 2002, 515(1):21-35.
[19] SUN Y J, LI J M. Self-diffusion mechanisms of adatom on Al (001), (011) and (111) surfaces[J]. Chinese Physics Letters, 2003, 20(2):269-272.
[20] HIROYUKI N, KAZUMI T, YOSHIHIRO Y, et al. Grain boundary self-diffusion in directionally solidified equiatomic Fe-Co alloy[J]. Materials Science and Engineering:A, 2004, 382(1-2):250-256.
[21] BALLUFFI R W, MEHL MEDALIST R F. Grain boundary diffusion mechanisms in metals[J]. Metallurgical and Materials Transactions B, 1982, 13(4):527-553.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%