欢迎登录材料期刊网

材料期刊网

高级检索

采用原位还原法在EVA复合发泡材料表面负载银纳米颗粒,制备具有抗菌性能的负载纳米银EVA复合发泡材料,通过场发射扫描电镜、X射线光电子能谱、电感耦合等离子体发射光谱以及X射线衍射等表征其形貌及结构,并分别采用热失重和抗菌实验对所制备复合发泡材料的热稳定性和抗菌性进行评价。结果表明:EVA复合发泡材料表面均匀分布的颗粒状物质为单质银,其直径约为20nm;负载纳米银后EVA复合发泡材料在600℃时残炭率提高到3.22%;抗菌实验分析表明样品具有良好的抗菌持久性,在洗涤50次后对大肠杆菌、金黄色葡萄球菌抗菌率分别可达到98%和99%以上。

Through in-situ reduction method, Ag nanoparticles were loaded on the surfaces of EVA composite foams. A series of investigations, including field emission scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction, were carried out to characterize the samples. Thermal stability and antibacterial properties of the products were evaluated by thermo gravimetric analysis and antibacterial test, respectively. Results show that nanoparticles, with an average particle size of 20nm, are elemental silver and decorated on the surface of EVA composite foams in uniform and regular stacks; after the presence of Ag nanoparticles, char yield of the products at 600℃could increase to 3.22%; the samples have good persistent antibacterial effects and after 50 washing cycles, the antibacterial rate reaches above 98% and 99% against escherichia coli and staphylococcus aureus, respectively.

参考文献

[1] ZHENG Y Y. Preparation and characterization of functionalized graphene oxide nanoribbons/EVA composite films[J]. Journal of Materials Engineering, 2015, 43(2):96-102.
郑玉婴.功能化氧化石墨烯纳米带/EVA复合材料薄膜的制备及表征[J].材料工程, 2015, 43(2):96-102.
[2] WANG B, WANG M H, XING Z, et al. Preparation of radiation crosslinked foams from low-density polyethylene/ethylene-vinyl acetate (LDPE/EVA) copolymer blend with a supercritical carbon dioxide approach[J]. Journal of Applied Polymer Science, 2013, 127(2):912-918.
[3] MAITI M, JASRA R V, KUSUM S K, et al. Microcellular foam from ethylene vinyl acetate/polybutadiene rubber (EVA/BR) based thermoplastic elastomers for footwear applications[J]. Industrial & Engineering Chemistry Research, 2012, 51(32):10607-10612.
[4] YANG Z W. Research progress on antibacterial agent for plastic at home and abroad[J]. World Plastics, 2010, 28(9):45-48.
杨中文.塑料用抗菌剂的研究进展[J].国外塑料, 2010, 28(9):45-48.
[5] GAO D G, CHEN C, LYU B, et al. Synthesis polymer quaternary ammonium salt/nano-ZnO composite antibacterial agent via in-situ method[J]. Journal of Materials Engineering, 2015, 43(6):38-45.
高党鸽, 陈琛, 吕斌, 等.原位制备季铵盐聚合物/纳米ZnO复合抗菌剂[J].材料工程, 2015, 43(6):38-45.
[6] CHERNOUSOVA S, EPPLE M. Silver as antibacterial agent:ion, nanoparticle, and metal[J]. Angewandte Chemie International Edition, 2013, 52(6):1636-1653.
[7] LI T, ZHANG Y Y, SONG Z Y, et al. Preparation and characterization of antibacterial silver loaded montmorillonite under microwave irradiation[J]. Science and Engineering of Composite Materials, 2013, 20(1):15-22.
[8] TSIAGGALI M A, ANDREADOU E G, HATZIDIMITRIOU A G, et al. Copper (I) halide complexes of N-methylbenzothiazole-2-thione:synthesis, structure, luminescence, antibacterial activity and interaction with DNA[J]. Journal of Inorganic Biochemistry, 2013, 121:121-128.
[9] MA W, TUO T T, ZHANG S F. Research development of antibacterial agents[J]. Fine Chemicals, 2012, 29(6):521-525.
马威, 拓婷婷, 张淑芬.抗菌剂研究进展[J].精细化工, 2012, 29(6):521-525.
[10] LI C, SUN R, ZENG Q Y, et al. Preparation and antimicrobial mechanism of organic polymeric biocides[J]. Polymer Bulletin, 2011, (3):79-85.
李淳, 孙蓉, 曾秋苑, 等.有机高分子抗菌剂的制备及抗菌机理[J].高分子通报, 2011, (3):79-85.
[11] XIE X B, LI W R, ZENG H Y, et al. Activity and mechanism of silver nanoparticles on escherichia coli[J]. Journal of Materials Engineering, 2008, (10):106-109.
谢小保, 李文茹, 曾海燕, 等.纳米银对大肠杆菌的抗菌作用及其机制[J].材料工程, 2008, (10):106-109.
[12] MAO H, WANG C, WANG K. Gelation performance of cationic gemini silica sol with inorganic salts and its antibacterial property analysis[J]. Journal of Dispersion Science and Technology, 2014, 35(9):1208-1213.
[13] RAO R, SHILPA-CHAKRA C, RAO K V. Eco-friendly synthesis of silver nanoparticles using carica papaya extract for anti bacterial applications[J]. Advanced Materials Research, 2013, 629:279-283.
[14] VIJAY-KUMAR P P N, PAMMI S V N, KOLLU P, et al. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity[J]. Industrial Crops and Products, 2014, 52:562-566.
[15] LEE H, LEE Y, STATZ A R, et al. Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers[J]. Advanced Materials, 2008, 20(9):1619-1623.
[16] HAN S W, KIM Y, KIM K. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles:TEM, UV/VIS, XPS, and FTIR analysis[J]. Journal of Colloid and Interface Science, 1998, 208(1):272-278.
[17] WAGNER C D. Handbook of X-ray Photoelectron Spectroscopy:A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy[M]. Eden Prairie, MN:Perkin-Elmer Corp, Physical Electronics Division, 1979.
[18] AKHAVAN O, ABDOLAHAD M, ASADI R. Storage of Ag nanoparticles in pore-arrays of SU-8 matrix for antibacterial applications[J]. Journal of Physics D:Applied Physics, 2009, 42(13):135416-135422.
[19] WANG H E, QIAN D. Synthesis and electrochemical properties ofα-MnO2 microspheres[J]. Materials Chemistry and Physics, 2008, 109(2-3):399-403.
[20] HUANG W, WANG Y X, CUI F F, et al. Electrochemical performance of chemically prepared AgO[J]. Chinese Journal of Power Sources, 2013, 37(6):993-996.
黄雯, 王宇轩, 崔菲菲, 等.化学法合成过氧化银及其电化学性能[J].电源技术研究与设计, 2013, 37(6):993-996.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%