{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以多酸铵为原料,采用返溶除杂、溶液脱氨、溶析结晶的方法,制备了纯度大于99.5%的酸钠产品.通过研究表明:影响脱氨过程脱氨时间的主要因素为溶液终点pH值;最佳溶析结晶条件为[V]浓度150 ~ 200g/L,pH值为7.3 ~8.1,结晶剂与溶液体积比为1∶1,结晶时间为1h,收率达到了97.7%.","authors":[{"authorName":"殷兆迁","id":"e0880a38-e569-4baa-86bd-424a7202bf3f","originalAuthorName":"殷兆迁"},{"authorName":"李千文","id":"100f4c5f-f8c3-41b9-8dae-25bde4c2d174","originalAuthorName":"李千文"},{"authorName":"彭一村","id":"8b1c8cf0-f397-410f-9bfa-b97b63a1c9ae","originalAuthorName":"彭一村"},{"authorName":"吴刘柱","id":"63da2f9a-126d-434d-870c-eb76c0e05f0e","originalAuthorName":"吴刘柱"},{"authorName":"潘少彦","id":"c1d6ce6b-fa96-4726-b0c1-633222efb426","originalAuthorName":"潘少彦"}],"doi":"10.7513/j.issn.1004-7638.2015.02.004","fpage":"17","id":"7f3b89ba-a6b2-451f-854c-2b28555ee7ca","issue":"2","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"ca0b9c97-9a48-4f37-a25f-fa9252701491","keyword":"酸钠","originalKeyword":"偏钒酸钠"},{"id":"ba308191-e868-4607-9c10-2fbadd5b1dd8","keyword":"多酸铵","originalKeyword":"多钒酸铵"},{"id":"05028441-e161-434d-b507-924550fb30a7","keyword":"脱氨","originalKeyword":"脱氨"},{"id":"8f9df3a6-9b72-4943-b692-78b9ff5f51d3","keyword":"收率","originalKeyword":"钒收率"}],"language":"zh","publisherId":"gtft201502004","title":"酸钠制取技术研究","volume":"36","year":"2015"},{"abstractinfo":"2-苯基-1,2,3-三唑醛和喹喔啉醛通过亚胺键固载到介孔分子筛MCM-41上,得到6种MCM-41固载多氮杂环席夫碱(L1~L6),用FT-IR、XRD和SEM等技术手段对所制得的固载席夫碱进行表征.研究了以MCM-41固载多氮杂环席夫碱和金属盐酸钠为共同催化剂,过氧化氢为氧源,直接催化氧化苯合成苯酚,用气相色谱快速检测苯酚产率.系统地考察了配体、金属盐、温度、溶剂、催化剂用量、反应时间、氧化剂等因素对反应的影响,产率最佳可达23.9%,选择性大于90%.对催化剂扩大5倍量进行试验,得到23%的产率和93%的选择性,并且催化剂重复使用3次仍能达到19%的产率和90%以上的选择性.","authors":[{"authorName":"付亚红","id":"866e2403-e9d4-428a-8ecd-fe425139171a","originalAuthorName":"付亚红"},{"authorName":"师红丽","id":"59049b91-ae90-40c7-bb13-5280f33da3c5","originalAuthorName":"师红丽"},{"authorName":"周广鹏","id":"2e1be2c1-164c-4f47-81bd-3e36d6ee80c6","originalAuthorName":"周广鹏"},{"authorName":"惠永海","id":"8a5c0597-afef-4392-92be-fa608817ea85","originalAuthorName":"惠永海"},{"authorName":"解正峰","id":"b02c2618-3fb6-44a9-bbab-826b625867d8","originalAuthorName":"解正峰"}],"doi":"10.11944/j.issn.1000-0518.2015.11.150144","fpage":"1259","id":"2dd461bb-d40d-4ae4-973e-5614fd0b3578","issue":"11","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"32c76753-f5f6-431a-8832-0d03fb3d1f9e","keyword":"席夫碱","originalKeyword":"席夫碱"},{"id":"ea4ecda7-e13c-43ee-900a-626adb644a70","keyword":"固载","originalKeyword":"固载"},{"id":"d9b54ce9-9ed0-4384-a378-3098086272c7","keyword":"介孔分子筛MCM-41","originalKeyword":"介孔分子筛MCM-41"},{"id":"cd957c0d-50b6-48b4-856c-78f54586b1f1","keyword":"苯","originalKeyword":"苯"},{"id":"118de8d9-283d-426a-8f3b-abcc6d459c36","keyword":"苯酚","originalKeyword":"苯酚"},{"id":"dfedeaa1-dea4-47f4-b4c8-4d983bc5286c","keyword":"氧化","originalKeyword":"氧化"},{"id":"5a4ef785-c008-4da8-b941-d08839bcec4d","keyword":"酸钠","originalKeyword":"偏钒酸钠"}],"language":"zh","publisherId":"yyhx201511006","title":"介孔分子筛MCM-41固载多氮杂环席夫碱与酸钠共催化氧化苯一步制备苯酚","volume":"32","year":"2015"},{"abstractinfo":"直接甲酸燃料电池的两大问题是Pd催化剂对甲酸氧化的电催化稳定性不好和Pd能催化甲酸分解.研究发现,当Pd/C在酸钠溶液中浸泡后能吸附上VO3-,吸附上VO3-的Pd/C催化剂对甲酸分解的催化性能会大大降低,由甲酸分解产生的CO的量也大大降低,使Pd/C催化剂被CO毒化的几率也大大降低,因此,在酸钠溶液中浸泡后的Pd/C催化剂对甲酸氧化的峰电流密度要比没有浸泡的Pd/C催化剂高13%左右.计时电流曲线的测量表明,6000s时在酸钠溶液中浸泡后的Pd/C催化剂对甲酸氧化的峰电流密度要比没有浸泡的Pd/C催化剂高42%左右.结果证明,在酸钠溶液中浸泡能提高Pd/C催化剂对甲酸氧化的电催化活性,特别是电催化稳定性.","authors":[{"authorName":"郭琦","id":"027d3dad-8285-4891-902b-0df5898f4030","originalAuthorName":"郭琦"},{"authorName":"李焕芝","id":"b4be0b88-12f9-4706-9f2d-aa07a862d72e","originalAuthorName":"李焕芝"},{"authorName":"季云","id":"54506ba8-8aca-44b3-bb6d-54125a71cc0f","originalAuthorName":"季云"},{"authorName":"陆天虹","id":"de73b8cb-7a23-4211-9d44-c7f5b93ec536","originalAuthorName":"陆天虹"}],"doi":"10.3724/SP.J.1095.2013.20082","fpage":"191","id":"9f2df6a4-0c91-44e3-a23f-17da53811c98","issue":"2","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"3da18894-6e4f-4847-83d7-33378232f2aa","keyword":"炭载Pd催化剂","originalKeyword":"炭载Pd催化剂"},{"id":"39eb0c99-a07a-4259-969b-9c9db6085043","keyword":"酸钠","originalKeyword":"偏钒酸钠"},{"id":"87b0cf1a-9295-441a-9f79-0a9365361641","keyword":"甲酸氧化","originalKeyword":"甲酸氧化"},{"id":"0d8bfa90-7faf-4b18-b7b4-de8f47ff86a9","keyword":"甲酸分解","originalKeyword":"甲酸分解"},{"id":"71bbe281-bd61-439e-bfb6-98a526296d00","keyword":"直接甲酸燃料电池","originalKeyword":"直接甲酸燃料电池"}],"language":"zh","publisherId":"yyhx201302012","title":"酸钠对甲酸在Pd/C催化剂上氧化的电催化性能影响的机理","volume":"30","year":"2013"},{"abstractinfo":"为克服2024铝合金表面单独盐或锆盐转化膜存在裂纹而导致其耐蚀性能不佳的问题,采用由氟锆酸钾、酸钠组成的转化液,在2024铝合金表面制备了锆复合转化膜.采用扫描电镜、能谱仪分析了复合膜的形貌及成分,采用中性盐雾试验和极化曲线研究了其耐蚀性能,采用百格法划格法研究了复合膜与基体的结合力及复合膜与漆膜的结合力.采用单因素法对转化液组分及转化条件进行了优选.结果表明:在2.0 g/L K2ZrF6,2.5 g/L NaVO3组成的转化液中,在pH值为3.0,温度为65℃的条件下反应20 min,所得锆复合膜致密、无裂纹,由O,F,Mg,Al,Zr,V,Cu等元素组成,膜基、膜漆结合较好,复合膜腐蚀电位较基体正移了86 mV,腐蚀电流密度减小为基材的1/5,耐蚀性能较基体明显提高.","authors":[{"authorName":"王娇","id":"934cc9e3-c618-43b4-affd-c6a8b35aa696","originalAuthorName":"王娇"},{"authorName":"郭瑞光","id":"8f94e25d-40c9-446e-8075-919ca9335d41","originalAuthorName":"郭瑞光"}],"doi":"","fpage":"1","id":"a7a0dcd7-5194-4e7c-a6bb-9c503d22ed6a","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"1afcf799-5b49-4c41-89eb-79b09eb96895","keyword":"2024铝合金","originalKeyword":"2024铝合金"},{"id":"a7af9ad8-4378-4ebd-b82c-9b2b637e0538","keyword":"复合转化膜","originalKeyword":"复合转化膜"},{"id":"c055e7f6-ef32-4353-9f1e-a50929ba5b32","keyword":"氟锆酸钾","originalKeyword":"氟锆酸钾"},{"id":"7a43e70b-5378-4e19-893b-df0820393134","keyword":"酸钠","originalKeyword":"偏钒酸钠"},{"id":"44ec98dd-7311-4033-9d76-8eb3171db0a1","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"}],"language":"zh","publisherId":"clbh201403001","title":"2024铝合金表面锆复合转化膜的制备及其性能","volume":"47","year":"2014"},{"abstractinfo":"为解决单一钒酸盐转化膜表面因存在裂纹而耐蚀性不佳的问题,采用由硫酸氧钛(TiOSO4)、酸钠(NaVO3)组成的转化液,在LY12铝合金表面制备出-太复合转化膜.通过中性盐雾(NSS)测试讨论了TiOSO4和NaVO3质量浓度、时间、温度、pH等工艺条件对转化膜耐蚀性的影响,并通过单因素试验得到了最佳转化条件:TiOSO4 0.5 g/L,NaVO3 0.4 g/L,pH 4.0,温度25℃,转化时间10 min.用扫描电镜和能谱分析了转化膜的表面形貌及元素组成.结果表明,由O、Ti、V、Al、Mg等元素组成的-钛复合转化膜无裂纹.LY12铝合金经转化处理后,在3.5% NaCl溶液中的腐蚀电位较转化前正移56 mV,腐蚀电流密度减小约1/5,耐盐雾时间达到91h,耐蚀性得到显著提高.","authors":[{"authorName":"李海燕","id":"6c951b9f-8c78-4108-88ee-3e36c34e4a79","originalAuthorName":"李海燕"},{"authorName":"郭瑞光","id":"12e8bbb3-df7f-418e-9674-3ce4bd68d93b","originalAuthorName":"郭瑞光"},{"authorName":"何蕾","id":"ca52206a-5d7a-407e-b469-65c4359239ac","originalAuthorName":"何蕾"}],"doi":"","fpage":"386","id":"27f903df-147e-4889-8f14-2df94a9cba39","issue":"7","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"decabe04-8d9c-4164-9152-6f08b2d03aae","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"64227e96-0ccc-408b-a838-fdb4acaf4ca0","keyword":"转化膜","originalKeyword":"转化膜"},{"id":"781536f2-22db-4d95-8cf4-dcdf795fccd5","keyword":"硫酸氧钛","originalKeyword":"硫酸氧钛"},{"id":"da296833-b135-4ffd-9d13-ee7029bcbce7","keyword":"酸钠","originalKeyword":"偏钒酸钠"},{"id":"65349f7e-5944-4ae1-946c-2490e76a641b","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"ddyts201507006","title":"LY12铝合金表面-钛复合转化膜的制备与耐蚀性研究","volume":"34","year":"2015"},{"abstractinfo":"为了提高镁合金表面的耐蚀性能,采用单因素实验的方法,研究溶液组成、转化温度、转化时间对转化膜的影响.通过盐雾试验以及电化学阻抗测试转化膜层的耐蚀性能.利用扫描电子显微镜和能量分散仪分析转化膜的微观形貌和成分.结果表明,当氟锆酸钾与酸钠质量浓度比为5∶1(酸钠1 g/L)时,转化温度在60 ~ 80℃之间,转化时间50 min,能够形成耐蚀性能良好的转化膜.","authors":[{"authorName":"赵思萌","id":"f0439cb3-8156-4cce-86cb-575187590b91","originalAuthorName":"赵思萌"},{"authorName":"郝建军","id":"268af0b1-21eb-44ec-b33f-aa8cf1239624","originalAuthorName":"郝建军"},{"authorName":"田鑫奇","id":"1b1985b5-2f40-48bb-b26f-3febf40b601b","originalAuthorName":"田鑫奇"},{"authorName":"刘百慧","id":"855a7948-c3b1-42b1-aa42-8305f474eca0","originalAuthorName":"刘百慧"}],"doi":"10.3969/j.issn.1001-3849.2017.02.002","fpage":"5","id":"60365de9-aea2-44ae-8155-03f9a7bd4f21","issue":"2","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"05b571b9-8517-4c12-9f85-46882139f20d","keyword":"氟锆酸钾","originalKeyword":"氟锆酸钾"},{"id":"08927f39-09af-4eb6-b9e6-df2c939ea28b","keyword":"酸钠","originalKeyword":"偏钒酸钠"},{"id":"f7379b02-ed85-4fea-93d7-313befffedd8","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"}],"language":"zh","publisherId":"ddjs201702002","title":"镁合金锆酸盐体系转化膜工艺的研究","volume":"39","year":"2017"},{"abstractinfo":"采用溶析结晶法制备酸钾,确定高浓度下酸钾存在酸度范围.试验结果表明,浓度150 g/L,pH值7.6 ~8.5,溶析结晶法制备酸钾时溶析剂采用乙醇、加入量按体积比1∶1,搅拌60 min,结晶收率大于95%,酸钾纯度98%以上.在溶析结晶过程中结晶收率与溶析剂配比、结晶前浓度、结晶时间关系密切;结晶晶体中的铬随结晶前液浓度增加而增加,不随结晶时间的变化而变化,硅随结晶时间的增加而降低,不随结晶浓度的变化而变化,同时通过控制溶析剂加入量可控制结晶粒度.","authors":[{"authorName":"吴刘柱","id":"9e9c1ea6-1e0c-4d9d-b1f9-83a47cba95c1","originalAuthorName":"吴刘柱"}],"doi":"10.7513/j.issn.1004-7638.2016.02.011","fpage":"62","id":"2b5fef26-491f-4b33-91b7-297e5ea8aa0f","issue":"2","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"ce18b6f6-039b-481b-8dbc-391f7c2b0a21","keyword":"酸钾","originalKeyword":"偏钒酸钾"},{"id":"affdafa5-02b1-41f7-8431-4452d0362768","keyword":"溶析结晶","originalKeyword":"溶析结晶"},{"id":"ceb3a75f-09dd-45fd-8cb8-5c3ffc79e44c","keyword":"硅","originalKeyword":"硅"},{"id":"5aed7812-c920-414f-b0d1-5eee17d36e4e","keyword":"铬","originalKeyword":"铬"},{"id":"c40764da-bead-4048-9c3b-fc54ec6b7346","keyword":"收率","originalKeyword":"收率"}],"language":"zh","publisherId":"gtft201602011","title":"溶析结晶法制备酸钾","volume":"37","year":"2016"},{"abstractinfo":"研究了由多酸铵制取酸钾的工艺技术,考察了结晶方式、浓度对酸钾成分的影响.试验结果表明:自然结晶条件下,结晶孕育时间为15~ 20 h,滤液中残高于25 g/L;加入结晶剂条件下,可以大大缩短酸钾的结晶时间,结晶时间为5 ~10 min,滤液中残含量低于2.5 g/L,结晶率超过了97%.采用加入结晶剂的方法进行了工业试验,制取了1.5t酸钾产品,其成分TV≥36%,K≥28%,Na<0.05%,Fe<0.02%,达到预期目标.","authors":[{"authorName":"殷兆迁","id":"6f985a74-1300-4ed0-baed-266ad16867d5","originalAuthorName":"殷兆迁"}],"doi":"10.7513/j.issn.1004-7638.2014.001.007","fpage":"28","id":"bb3d7910-efcd-4ced-9d7b-70a8b135a398","issue":"3","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"4eb851a8-e0f5-4286-a7ce-b6d5dd9fd13e","keyword":"酸钾","originalKeyword":"偏钒酸钾"},{"id":"98604a65-3b0d-46d5-9d9a-13586bfaf370","keyword":"多酸铵","originalKeyword":"多钒酸铵"},{"id":"f348000e-1433-4434-a8f1-2f86412230d9","keyword":"结晶剂","originalKeyword":"结晶剂"},{"id":"333a53c0-9182-44b9-99aa-4a5d3a4ce942","keyword":"结晶时间","originalKeyword":"结晶时间"}],"language":"zh","publisherId":"gtft201403007","title":"多酸铵制取酸钾的试验研究","volume":"35","year":"2014"},{"abstractinfo":"采用DSC、TG热分析方法,对酸铵的热分解机理进行了研究.分析表明,热分解过程包括4个步骤,前三步吸热反应以及最后一步放热反应.利用Kissinger法以及Kissinger-Crane法对V2O5生成反应动力学参数进行计算,建立反应速率方程.结果表明,酸铵热分解过程为第三步化学反应控速,反应的活化能为156.60 kJ/mol,指前因子为2.43×1014 min-1,反应级数为0.94.","authors":[{"authorName":"王唐林","id":"7b832e44-7840-457f-a625-b3d1c6b5ae64","originalAuthorName":"王唐林"},{"authorName":"孙朝晖","id":"0df827ac-2557-46f7-b469-3dbf20b55fb2","originalAuthorName":"孙朝晖"},{"authorName":"鲜勇","id":"a3944b31-3a17-4762-8f02-dff581182829","originalAuthorName":"鲜勇"},{"authorName":"尹丹凤","id":"89d2c212-8f25-41c4-8652-b6c731509def","originalAuthorName":"尹丹凤"},{"authorName":"李千文","id":"9eea34fb-3e82-4525-a6ba-c1020eb96f01","originalAuthorName":"李千文"}],"doi":"10.7513/j.issn.1004-7638.2015.05.002","fpage":"6","id":"4116ecc9-2777-4960-9046-b33ee20c0740","issue":"5","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"f43b8c83-2dde-4468-83f6-cc5151151cfb","keyword":"V2O5","originalKeyword":"V2O5"},{"id":"374af79c-a928-4879-b649-fce0b52e448c","keyword":"酸铵","originalKeyword":"偏钒酸铵"},{"id":"8758ff4f-b20f-4942-beb7-8f1394d8bec7","keyword":"热分解","originalKeyword":"热分解"},{"id":"96fbb2b9-7edb-4022-98a8-ffc6860a24fc","keyword":"差热分析","originalKeyword":"差热分析"},{"id":"4d6cbc4f-f8c3-4cbe-82d3-bcca315a12b2","keyword":"动力学参数","originalKeyword":"动力学参数"},{"id":"ce36e6b7-a3fc-417f-a63b-1f10fc97a36f","keyword":"活化能","originalKeyword":"活化能"}],"language":"zh","publisherId":"gtft201505002","title":"酸铵热分解机理研究","volume":"36","year":"2015"},{"abstractinfo":"通过计算反应Gibbs自由能和平衡溶解度对铬酸钠碱性液添加石灰除过程进行理论分析,结合红外光谱研究了含溶液的结构变化,研究添加石灰除时各因素的影响规律.结果表明:在298~373 K的范围内,体系中各离子与氧化钙生成相应钙盐的反应自由能绝对值由大到小的顺序为VO3-、CO32-、SO42-、VO43-、CrO42-;同时,各钙盐间可能存在相互转化,溶液中CO32-能分解CaCrO4和Ca3(VO4)2等钙盐,VO43-能分解CaCrO4.除过程中除生成Ca3(VO4)2和Ca2V2O7外,还能生成CaCO3、CaCrO4、CaSO4·nH2O等化合物,这是由于石灰加入量过多所致.溶液结构分析结果表明:随着pH值从13降到9左右,酸根由VO43-转化成VO43-和V2O74-共存的结构.除实验结果表明:提高溶液pH值、增大n(CaO )/n(V2O5)或加入高活性石灰乳均可提高除率,而溶液中CO32-的存在明显降低除率;加入理论用量3倍的石灰,溶液pH值降全10左右时,除率可达到85%,相对于工业除过程渣量减少88%左右.","authors":[{"authorName":"赵东峰","id":"c2b12e45-2a30-4f8b-9967-065f09dd8bd5","originalAuthorName":"赵东峰"},{"authorName":"田侣","id":"1b8f05c7-6b10-40f4-8d0c-9a58dc445e97","originalAuthorName":"田侣"},{"authorName":"丁瑞锋","id":"0b81312f-70f1-48a2-8649-020ee1b31727","originalAuthorName":"丁瑞锋"},{"authorName":"刘桂华","id":"5240591f-0048-4dc6-a3c1-869ac6d52573","originalAuthorName":"刘桂华"},{"authorName":"周秋生","id":"e07b8ae0-3fa3-4fbf-87b4-f0aee9253fa9","originalAuthorName":"周秋生"},{"authorName":"李小斌","id":"3b9a60b7-ec56-4536-a205-20ae1d11a653","originalAuthorName":"李小斌"},{"authorName":"彭志宏","id":"0f5a4491-2145-40a6-be2e-099e386f233d","originalAuthorName":"彭志宏"}],"doi":"","fpage":"3162","id":"9cfc2c49-b4ba-4fc3-8a9a-e8cd54a67a21","issue":"12","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"57c8bfaa-9090-40fd-92e0-e1b50180feca","keyword":"铬酸钠溶液","originalKeyword":"铬酸钠溶液"},{"id":"f289e514-ee6e-486b-8f6e-c7a89b8af2a1","keyword":"石灰","originalKeyword":"石灰"},{"id":"e650ad7d-7cba-4f95-aed5-03cbcb44010b","keyword":"除","originalKeyword":"除钒"},{"id":"078430ea-ba09-4e98-b14f-dc49ef6e6871","keyword":"Gibbs自由能","originalKeyword":"Gibbs自由能"},{"id":"81f77a9f-1d66-47ac-9371-dc384f4730a4","keyword":"平衡溶解度","originalKeyword":"平衡溶解度"}],"language":"zh","publisherId":"zgysjsxb201112027","title":"铬酸钠碱性液中加石灰除","volume":"21","year":"2011"}],"totalpage":717,"totalrecord":7162}