{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对不同几何尺寸的[0°/90°]正交非对称铺设碳纤维复合材料的双稳态特性进行了研究.在分析正交非对称复合材料双稳态特性产生机理和理论基础上,成功制备了碳纤维/环氧树脂(T700/3234)正交铺设的双稳态试样.对制备固化冷却后产生的圆柱状第一稳态、建立实验平台实现向第二稳态转变过程,经过逆向加载返回至第一稳态的整体稳态间转变总过程进行实验研究,分析稳态曲率半径、面外位移、稳态间转变最大载荷及载荷-位移曲线等的变化规律.","authors":[{"authorName":"张征","id":"4ce473c1-c43d-4213-bdaa-9ababe45cfc1","originalAuthorName":"张征"},{"authorName":"吴和龙","id":"b8076da8-bb76-4e22-96c7-8ccae8ab773c","originalAuthorName":"吴和龙"},{"authorName":"吴化平","id":"19cd30a2-ab36-4b96-8378-d4dd7621cebe","originalAuthorName":"吴化平"},{"authorName":"鲍雨梅","id":"bf467fe5-3365-4a32-a274-e27764caf1dc","originalAuthorName":"鲍雨梅"},{"authorName":"柴国钟","id":"29c6101b-192f-4d46-b952-adac273cd6f4","originalAuthorName":"柴国钟"}],"doi":"","fpage":"236","id":"5f956d58-578b-4c8c-bebc-bd7865ef2017","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"5e351f2d-c8c0-4fad-b1a1-51e12d083d90","keyword":"正交非对称","originalKeyword":"正交非对称"},{"id":"9cbf9814-9f60-4fcc-8966-8572836c5c6f","keyword":"层合壳","originalKeyword":"层合壳"},{"id":"4b0c3e0e-9e0f-4b9b-bd54-2585f15ea865","keyword":"双稳态特性","originalKeyword":"双稳态特性"},{"id":"bbc2fd2f-fa1f-4805-93f1-c90993f75c45","keyword":"稳态转变载荷","originalKeyword":"稳态转变载荷"}],"language":"zh","publisherId":"gncl201302019","title":"正交铺设碳纤维复合材料结构的双稳态特性研究","volume":"44","year":"2013"},{"abstractinfo":"讨论温度对T700/3234反对称铺设圆柱壳结构的双稳态特性的影响。通过热压固化成型工艺制备了三种不同铺层层数的试样,采用两点加载的方式,使用在现有的拉伸试验机上改装的实验测试平台驱动反对称铺设圆柱壳结构进行稳态转变,持续捕捉实验过程中的数据,得到在20℃,40℃,60℃和80℃温度下的载荷—位移曲线的变化规律及稳态转变载荷。实验后,通过图像处理技术得到曲率和扭曲率等数据。系统分析稳态转变载荷和稳态曲率变化情况,并对存放时间对壳结构的影响进行了讨论。结果表明,温度对双稳态结构稳态转变影响较大,给出了温度对snap-through和snap-back过程的影响规律。","authors":[{"authorName":"张征","id":"46d8e128-889f-4f1f-a42c-5cb767c54d1c","originalAuthorName":"张征"},{"authorName":"潘豪","id":"3282578c-4a3d-4024-a0df-2cb2e73eded0","originalAuthorName":"潘豪"},{"authorName":"叶钢飞","id":"7b36c187-4a26-4d16-b738-1d3878d6dc76","originalAuthorName":"叶钢飞"},{"authorName":"李琛","id":"9a375997-11ca-4664-a7ad-4bee90348bb5","originalAuthorName":"李琛"},{"authorName":"吴化平","id":"b8b3dbe7-9f10-4a3b-b944-36357f09298d","originalAuthorName":"吴化平"},{"authorName":"柴国钟","id":"60f66e1b-bd13-41d4-9d45-60498d6b6f51","originalAuthorName":"柴国钟"}],"doi":"10.11868/j.issn.1005-5053.2016.5.012","fpage":"70","id":"c9ccbe07-c39d-4db6-a6a6-5549e9fe4ae5","issue":"5","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"9e2a7e37-d891-4da2-b867-574dad9d02eb","keyword":"碳纤维复合材料","originalKeyword":"碳纤维复合材料"},{"id":"fd0a977c-8cf4-4673-99f0-72d34257b0fe","keyword":"反对称层合壳","originalKeyword":"反对称层合壳"},{"id":"1b9d1db4-f627-41e1-83d6-b936ff2d21d1","keyword":"双稳态特性","originalKeyword":"双稳态特性"},{"id":"30a40cbd-a041-4b1a-9f7c-f2ce86e3e31c","keyword":"温度场","originalKeyword":"温度场"}],"language":"zh","publisherId":"hkclxb201605012","title":"温度对T700/3234反对称铺设圆柱壳结构的双稳态特性影响","volume":"36","year":"2016"},{"abstractinfo":"对于具有一定形式非线性的薛定谔方程,存在单孤子解的多稳态,也就是说对于相同能量,单孤子具有不同的传输常数.本文以一非线性形式Linear Smooth Step(LSS)函数为例,对孤子的双稳态进行理论分析,并对其双稳态的光学转换进行数值模拟.","authors":[{"authorName":"张俊萍","id":"b801a67d-87cd-4d3d-a2e5-2571e2481b0d","originalAuthorName":"张俊萍"},{"authorName":"杨性愉","id":"deca5146-f66e-4dda-bf21-017a59b452d1","originalAuthorName":"杨性愉"}],"doi":"10.3969/j.issn.1007-5461.2002.01.007","fpage":"31","id":"4b6d0afc-f869-4d6a-b70e-9f738d9d5ebd","issue":"1","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"634d6d1e-affd-49c5-ba4f-c4b7522ed26c","keyword":"非线性薛定谔方程","originalKeyword":"非线性薛定谔方程"},{"id":"ddfbf32b-aa2e-4aa3-94d9-2f5be9e03edc","keyword":"双稳态孤子","originalKeyword":"双稳态孤子"},{"id":"9d18de60-ea93-4cb2-bd27-95d0c912546b","keyword":"光学转换","originalKeyword":"光学转换"}],"language":"zh","publisherId":"lzdzxb200201007","title":"双稳态孤子","volume":"19","year":"2002"},{"abstractinfo":"本文研究了半磁性半导体Zn1-xMnxSe(0.001≤x≤0.010)的光学吸收双稳态开关特性与Mn2+浓度的关系.对于x=0.001的样品开关时间可达0.3ns.用一个光学吸收褪色模型分析解释了这个光学吸收双稳态开关时间和Mn2+浓度之间的关系.","authors":[{"authorName":"景玉梅","id":"9d81953a-b142-49f8-b620-1903bc1984a9","originalAuthorName":"景玉梅"}],"doi":"10.3969/j.issn.1000-985X.2000.04.013","fpage":"364","id":"ed1854d2-4b53-4d37-983f-845485ce77e7","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"295cb831-8d55-46f0-ace5-5107a975623f","keyword":"半磁性半导体","originalKeyword":"半磁性半导体"},{"id":"f87606eb-0dd4-45e0-a9cd-514d0b95003f","keyword":"光学吸收双稳态","originalKeyword":"光学吸收双稳态"}],"language":"zh","publisherId":"rgjtxb98200004013","title":"半磁性半导体Zn1-xMnxSe(0.001≤x≤0.010)光学吸收双稳态开关特性的研究","volume":"29","year":"2000"},{"abstractinfo":"文中我们针对声光双稳态混沌系统提出了参数调制的方法实现保密通信,计算研究表明,参数调制虽然对混沌系统有一定的改变,但并不改变该系统的伪随机的特性,我们还计算模拟了该方法,并讨论了对其的影响因素.","authors":[{"authorName":"张涛","id":"85b44f31-3538-4aae-a9bd-4b1e9d0836fb","originalAuthorName":"张涛"},{"authorName":"刘佩田","id":"b048888a-70d5-4e9e-865c-a5c8fd02af7c","originalAuthorName":"刘佩田"},{"authorName":"路轶群","id":"1e5e15bb-1701-4bbc-a598-039ed9647ebd","originalAuthorName":"路轶群"}],"doi":"10.3969/j.issn.1007-5461.2003.03.013","fpage":"315","id":"7ca0f79f-9c41-4533-ae99-5cb515581e6b","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"29bfaf39-0e0d-4674-8bbd-f41833ac56e4","keyword":"声光双稳态混沌","originalKeyword":"声光双稳态混沌"},{"id":"b0a65a8a-fb3d-4276-8954-ad8cd97f22fc","keyword":"参数调制","originalKeyword":"参数调制"},{"id":"0e4b7ead-aa0a-49ff-a9c3-815639835820","keyword":"保密通信","originalKeyword":"保密通信"}],"language":"zh","publisherId":"lzdzxb200303013","title":"声光双稳态混沌系统参数调制通信","volume":"20","year":"2003"},{"abstractinfo":"基于F-P腔理论,通过引入有效折射率概念,研究了非线性微腔的光学双稳态,给出了相应的解析表达式.理论曲线与其它文献的数值模拟结果相吻合.研究表明,系统要产生双稳态现象,必须对入射光预置一定的偏移量.若介质是聚焦型Kerr介质,入射光波必须红移;反之则蓝移.临界的偏移量是腔共振模线宽的0.866倍.","authors":[{"authorName":"金铱","id":"76d65957-8d7e-416a-bbed-3938b9917bd7","originalAuthorName":"金铱"},{"authorName":"陈宪锋","id":"a7e2fe0b-4d23-48f7-b8b3-d74fee0b0085","originalAuthorName":"陈宪锋"},{"authorName":"黄正逸","id":"d76b4944-72da-4c98-9627-d305e5c34415","originalAuthorName":"黄正逸"},{"authorName":"沈小明","id":"100e917e-9cdc-43fa-b755-01c43d28cd7d","originalAuthorName":"沈小明"},{"authorName":"蒋美萍","id":"35f2c3fb-b1d9-4a5d-9000-4655db0afd72","originalAuthorName":"蒋美萍"}],"doi":"10.3969/j.issn.1007-5461.2009.05.014","fpage":"591","id":"753b6551-abf0-4cb7-9ac1-9e836e00ec72","issue":"5","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"d2711800-38ac-44a4-871c-bc0f52fe960b","keyword":"非线性光学","originalKeyword":"非线性光学"},{"id":"4653fe8d-9354-4193-bd07-95ba26dc637d","keyword":"双稳态","originalKeyword":"双稳态"},{"id":"e009136c-7291-4ab5-a6e6-a031d8e823ad","keyword":"有效折射率","originalKeyword":"有效折射率"},{"id":"858ea354-03f5-4f87-89ea-3b912e26c40c","keyword":"Kerr介质","originalKeyword":"Kerr介质"},{"id":"98c165f7-64d0-47bd-9827-7904532a4e2a","keyword":"F-P腔","originalKeyword":"F-P腔"}],"language":"zh","publisherId":"lzdzxb200905014","title":"非线性微腔的光学双稳态","volume":"26","year":"2009"},{"abstractinfo":"本文利用通电平面螺旋线圈产生磁场特点,采用镜像绕制以及并联连接双线圈的方法,研制了一种快速低功耗MEMS微型双稳态继电器结构,其尺寸约为3mm*4.5mm*1.5mm,文中着重分析其工作原理和过程.经过分析,该继电器在通电电流80~120mA时,开关时间约在0.1ms~0.2ms之间,因此,其具有体积小、开关速度快、低功耗等优点,并且易于集成和阵列,适用于能源有限并且可靠性要求高的微型航天器以及便携设备中.","authors":[{"authorName":"李慧娟","id":"7baa4a22-11cf-4b3d-bc6e-4e64d536f1ef","originalAuthorName":"李慧娟"},{"authorName":"尤政","id":"ca1dccc2-4418-45e0-9b7d-f0d55a9f3713","originalAuthorName":"尤政"},{"authorName":"张高飞","id":"f8fb41dd-7e4a-41ae-b454-3a818af309a9","originalAuthorName":"张高飞"},{"authorName":"杨建中","id":"825c86a7-8b8f-42b2-ac3c-87d637b9bfae","originalAuthorName":"杨建中"}],"doi":"10.3969/j.issn.1007-4252.2008.02.048","fpage":"500","id":"da835bca-c679-46a5-bc3c-cdbfd5ba9080","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"ed9759b7-9fab-46fa-8595-fa2834ceb858","keyword":"微机械系统","originalKeyword":"微机械系统"},{"id":"07995c8f-6df3-450d-8585-cc3ed18c6a26","keyword":"微继电器","originalKeyword":"微继电器"},{"id":"d155d7aa-e603-44cd-9e5c-5250e2371bc3","keyword":"平面螺旋线圈","originalKeyword":"平面螺旋线圈"},{"id":"f698ec83-8cbc-42d0-9ce2-902c89a88903","keyword":"微机械加工工艺","originalKeyword":"微机械加工工艺"}],"language":"zh","publisherId":"gnclyqjxb200802048","title":"MEMS微型双稳态电磁继电器的设计","volume":"14","year":"2008"},{"abstractinfo":"本文较系统地介绍了电学双稳态聚合物基存储器的基本特性和结构,并对聚合物存储器中高低阻态之间相互转换的物理和化学机制进行了比较全面的综述,从而为进一步研究电学双稳态聚合物基非挥发存储器提出了有益的指导.","authors":[{"authorName":"黄玥","id":"0d33c458-ae63-4497-b77e-99b4086db33f","originalAuthorName":"黄玥"}],"doi":"10.3969/j.issn.1007-4252.2011.03.007","fpage":"267","id":"4f74a253-9300-43e1-af20-f5a419508a8b","issue":"3","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"88043535-4bb7-4427-a19a-779c66268d55","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"65b2abe7-7402-4c55-b8d0-764b61efe6d2","keyword":"非挥发存储器","originalKeyword":"非挥发存储器"},{"id":"0bc72057-aec7-47c2-8ac0-dd204b4ae136","keyword":"导电机制","originalKeyword":"导电机制"}],"language":"zh","publisherId":"gnclyqjxb201103007","title":"电学双稳态聚合物基非挥发存储器及其导电机理研究进展","volume":"17","year":"2011"},{"abstractinfo":"影响非线性微腔双稳态阈值的因素很多,例如电介质折射率、周期数、缺陷层厚度、谱线宽度等.但是腔模红移起到了十分重要的作用.从理论上分析了红移对双稳态阈值的影响,并作了数值模拟.红移是研究双稳态阈值首先要考虑的问题.","authors":[{"authorName":"沈小明","id":"d73c2cfb-2949-48b8-822c-5ec34d5a738a","originalAuthorName":"沈小明"},{"authorName":"蒋美萍","id":"24e46a5f-df7e-4d25-b3df-b89ea7621bdc","originalAuthorName":"蒋美萍"},{"authorName":"陈宪锋","id":"118b78ed-2605-40d1-94d2-d19b5954d72e","originalAuthorName":"陈宪锋"},{"authorName":"倪重文","id":"3abaa7be-a531-4242-93dc-7d436945cab8","originalAuthorName":"倪重文"},{"authorName":"巢小刚","id":"1efc9f02-aec9-4c39-bc54-0fe2e4d4aff6","originalAuthorName":"巢小刚"},{"authorName":"是度芳","id":"48312182-8a50-47ba-9f15-e2e27a2c99b5","originalAuthorName":"是度芳"}],"doi":"10.3969/j.issn.1007-5461.2006.03.028","fpage":"413","id":"57e1910c-3ca7-465b-8f8f-fa05057a1fd4","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"df9a1ae7-ce47-45b1-b8d9-840969d99a1a","keyword":"非线性光学","originalKeyword":"非线性光学"},{"id":"8ee85b7a-c799-4b50-bc6c-623b16e15058","keyword":"红移","originalKeyword":"红移"},{"id":"c8a69123-4b99-41c0-8780-b3ef267a2fb3","keyword":"微腔","originalKeyword":"微腔"},{"id":"33fa5fb1-fb4f-4ada-b5be-3fedfeb41d6a","keyword":"双稳态阈值","originalKeyword":"双稳态阈值"}],"language":"zh","publisherId":"lzdzxb200603028","title":"腔模红移对非线性微腔双稳态阈值的影响","volume":"23","year":"2006"},{"abstractinfo":"为探明双稳态复合材料层合结构在复杂环境条件下的应用,对双稳态复合材料层合结构的黏弹性行为进行了研究。首先,将纤维简化为弹性材料,考虑基底材料的黏弹性行为。然后,根据纤维和基底的材料属性,通过理论分析得到了双稳态复合材料层合结构的黏弹性材料属性;根据经典层合板理论、最小应变能原理和 Ma x-well黏弹性模型建立了双稳态复合材料层合结构的黏弹性模型,通过理论分析得到其第二稳态主曲率与扭曲率随加载时间和温度的变化关系。同时,利用有限元软件ABAQUS及其子程序UMAT建立了相应的有限元模型,研究了加载时间和温度对层合结构第二稳态性能的影响。理论与模拟结果均表明:层合结构第二稳态主曲率随加载时间的延长和温度的升高而增大;扭曲率随加载时间的延长而减小,一般情况下随温度的升高而增大,但在加载时间较长且温度较高时,可能会出现扭曲率随温度升高而减小的情况。理论计算结果与有限元模拟结果的比较显示两者吻合较好,可以通过有限元模拟对双稳态复合材料层合结构的黏弹性行为进行研究。","authors":[{"authorName":"陈丹迪","id":"5985b3a5-dcec-4f9a-ba9b-62bad9e4ddc1","originalAuthorName":"陈丹迪"},{"authorName":"张征","id":"2a19b093-04f8-4cfe-8372-b6c7df1407c7","originalAuthorName":"张征"},{"authorName":"柴国钟","id":"2e576b95-96d2-491b-8a21-f5953f986c69","originalAuthorName":"柴国钟"}],"doi":"10.13801/j.cnki.fhclxb.20160201.001","fpage":"2336","id":"63891b37-69a8-4235-93de-43358885f52b","issue":"10","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"84e3c19d-1585-49a8-8413-a04e1050903a","keyword":"纤维复合材料","originalKeyword":"纤维复合材料"},{"id":"b1855002-bf6d-49d9-a333-278d4957c8db","keyword":"有限元法","originalKeyword":"有限元法"},{"id":"7965fb69-0164-430f-a46b-b0092a9493f1","keyword":"黏弹性","originalKeyword":"黏弹性"},{"id":"9eefe125-7d82-41c5-a5a0-3f844622ab9a","keyword":"双稳态","originalKeyword":"双稳态"},{"id":"52606438-5fb6-467d-93ed-ad218f9d1192","keyword":"层合结构","originalKeyword":"层合结构"}],"language":"zh","publisherId":"fhclxb201610025","title":"双稳态复合材料层合结构的黏弹性模型","volume":"33","year":"2016"}],"totalpage":2098,"totalrecord":20980}