{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用双靶共溅射法,分别在不同衬底温度、沉积压强和溅射功率下制备了 Cd1-x Znx Te 多晶薄膜样品,并采用X射线衍射仪、X 射线荧光光谱仪、扫描电子显微镜等方法对制备的 Cd1-x Znx Te 薄膜的结构、成分、形貌和光电学性质进行测试分析。结果表明,300℃衬底温度下制备的Cd1-xZnxTe薄膜成分单一,立方相结构,生长致密,表面颗粒平均大小约50 nm,Cd1-x Znx Te薄膜在(111)晶面的2θ值及晶格常数与Zn组分呈线性关系。Cd1-x Znx Te薄膜的禁带宽度与组分x 值呈线性关系。随着气压从8 Pa降低至1 Pa,Cd1-x Znx Te薄膜的晶粒尺寸增加,生长更加致密。Cd1-xZnxTe薄膜的室温电导率约为8.61×10-11(Ω·cm)-1,呈弱P型。","authors":[{"authorName":"汪雪梅","id":"eaa2f4f9-59e5-451b-a1ff-0d733cb8a42c","originalAuthorName":"汪雪梅"},{"authorName":"王文武","id":"e16bea26-b5bf-4f99-b00b-95b160897cee","originalAuthorName":"王文武"},{"authorName":"武莉莉","id":"1d8eed80-c63d-4e73-9348-396416e58c3f","originalAuthorName":"武莉莉"},{"authorName":"张立祥","id":"96376122-8565-4d18-a7a8-ea029c144ff8","originalAuthorName":"张立祥"},{"authorName":"冯良桓","id":"29499a28-e5ec-4084-9416-1c9a0d6777d1","originalAuthorName":"冯良桓"},{"authorName":"张静全","id":"53389d5f-1f1e-4dab-a8a5-f36cec671e26","originalAuthorName":"张静全"},{"authorName":"李卫","id":"5d626fd3-b527-469a-95bb-b2f6b2c5529e","originalAuthorName":"李卫"}],"doi":"10.3969/j.issn.1001-9731.2014.08.030","fpage":"8139","id":"eee8f014-4043-401a-b28c-19cb82032959","issue":"8","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c0962c13-6840-4ac8-8829-547cd5654815","keyword":"Cd1-x Znx Te薄膜","originalKeyword":"Cd1-x Znx Te薄膜"},{"id":"7de9c097-3bf4-4ed9-83c4-fd70bae72d1b","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"66b149e6-a9b6-4a36-a3d2-2318f9b8bf03","keyword":"叠层电池","originalKeyword":"叠层电池"}],"language":"zh","publisherId":"gncl201408030","title":"双靶共溅射制备Cd1-x Znx Te多晶薄膜的性质研究","volume":"","year":"2014"},{"abstractinfo":"CdZnTe晶体是一种性能优畀的室温核辐射探测器材料.在熔体法生长CdZnTe晶体的过程中,生长炉的内部温场分布对获得的晶体结构和性能有很大影响.根据CdZnTe晶体的生长习性,设计了三温区单晶炉,用坩埚下降法生长出CdZnTe单晶体.通过X射线衍射、红外透过率、I-V测试等分析研究,得到了红外透过率约为61%,腐蚀蚀坑密度(EPD)为104 cm-2,电阻率为109~1010 Ω·cm的Cd0.9 Zn0.1 Te单晶体.表明三温区坩埚下降法生长的单晶体结晶质量好、成分分布均匀、EPD低、红外透过性能好且电阻率高.","authors":[{"authorName":"邱春丽","id":"67c86abc-49c9-4d10-8f6c-2b800b0c0097","originalAuthorName":"邱春丽"},{"authorName":"赵北君","id":"970b0f0e-81e2-4637-b6d6-16f9e02e9453","originalAuthorName":"赵北君"},{"authorName":"朱世富","id":"54ad7f3b-3657-46af-816b-954b8c5f615e","originalAuthorName":"朱世富"},{"authorName":"王智贤","id":"f256ca28-c367-4fb6-b5d9-ad3281213da7","originalAuthorName":"王智贤"},{"authorName":"李新磊","id":"db2476a5-155a-4d20-a00d-005f0a4e134e","originalAuthorName":"李新磊"},{"authorName":"何知宇","id":"68ca0800-a45c-4438-8f04-923625a975db","originalAuthorName":"何知宇"},{"authorName":"陈宝军","id":"36362c5a-b306-48c9-a3d0-ed10528154f7","originalAuthorName":"陈宝军"},{"authorName":"唐世红","id":"866a7094-849b-442f-86de-6271000c928b","originalAuthorName":"唐世红"}],"doi":"","fpage":"60","id":"62e52542-7c2a-4b1d-8316-ac79668176f5","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"14a1dbaa-df74-4e0e-804c-f1107309e580","keyword":"CdZnTe","originalKeyword":"CdZnTe"},{"id":"66b6ea8a-155e-4e7e-9c81-d62168f99290","keyword":"单晶生长","originalKeyword":"单晶生长"},{"id":"597686e6-a2ec-475f-8bfb-3a9977ef9a04","keyword":"坩埚下降法","originalKeyword":"坩埚下降法"},{"id":"7e472e9a-a301-418f-85bb-ad461328cb14","keyword":"三温区","originalKeyword":"三温区"}],"language":"zh","publisherId":"gncl200901017","title":"三温区坩埚下降法生长Cd1-x Znx Te单晶体","volume":"40","year":"2009"},{"abstractinfo":"The electron paramagnetic resonance (EPR) parameters g and the hyperfine structure constants A of CO2+ in ZnX (X = S, Se, Te) and CdTe are studied, using the perturbation formulas of the EPR parameters for a 3d(7) ion in tetrahedra based on two mechanism models. In these formulas, both the contributions from the conventional crystal-field (CF) mechanism and those from the charge-transfer (CT) mechanism are taken into account. According to the investigations, the sign of the g-shift DeltagCT from the CT mechanism is the same as DeltagCF from the CF mechanism, whereas the contributions to the A value from the CF and CT mechanisms have opposite signs. Particularly, the contributions to the EPR parameters from the CT mechanism increase rapidly with increase of the spin-orbit coupling coefficient of the ligand and the covalency effect of the systems, i.e. S2- < Se2- < Te2-.","authors":[],"categoryName":"|","doi":"","fpage":"938","id":"104cd983-53a8-47e7-aee7-ffe240da58ea","issue":"12","journal":{"abbrevTitle":"ZFNSAJOPS","id":"1a5d2a8e-76c4-4142-a409-c3fb08d6eea4","issnPpub":"0932-0784","publisherId":"ZFNSAJOPS","title":"Zeitschrift Fur Naturforschung Section a-a Journal of Physical Sciences"},"keywords":[{"id":"12834871-03ee-4dbe-b0b1-3cb54b29308e","keyword":"crystal-fields and Spin Hamiltonians;EPR;Co2+;ZnX (X = S, Se, Te);CdTe;atomic screening constants;scf functions;field theory;cr2+ ion;spectra;znse;complexes;crystal;liyf4;znte","originalKeyword":"crystal-fields and Spin Hamiltonians;EPR;Co2+;ZnX (X = S, Se, Te);CdTe;atomic screening constants;scf functions;field theory;cr2+ ion;spectra;znse;complexes;crystal;liyf4;znte"}],"language":"en","publisherId":"0932-0784_2004_12_2","title":"On the EPR parameters of divalent cobalt in ZnX (X = S, Se, Te) and CdTe","volume":"59","year":"2004"},{"abstractinfo":"The gyromagnetic factors for Fe(3+) in ZnX (X = O, S, Se, Te) are theoretically studied from the perturbation formula of the g-factor for a 3d(5) ion in tetrahedra based on inclusion of both the crystal-field and the charge-transfer contributions. The related model parameters in the calculations are determined from the cluster approach in a uniform way. The g-shift Delta g (-g - g(s), where g(s) approximate to 2.0023 is the spin-only value) from the charge-transfer contributions is opposite (positive) in sign and much larger in magnitude as compared with that from the crystal-field ones. The importance of the charge-transfer contributions increases rapidly with increasing the covalency and the spin-orbit coupling coefficient of the ligand and thus exhibits the order of O(2-) < S(2-) Te(2-). The calculated g-factors by considering both the crystal-field and charge-transfer contributions show reasonable agreement with the experimental data for all the Fe(3+) centers in ZnX.","authors":[],"categoryName":"|","doi":"","fpage":"1891","id":"680faadd-4696-44bc-8eb5-3f2afae9a44b","issue":"17","journal":{"abbrevTitle":"MPLB","id":"0c4972a6-823c-4219-9fdb-20f780820472","issnPpub":"0217-9849","publisherId":"MPLB","title":"Modern Physics Letters B"},"keywords":[{"id":"547b6263-1426-47a7-9027-3e654ef0bbfd","keyword":"Crystal-fields and spin Hamiltonians;electron paramagnetic resonance;(EPR);Fe(3+);ZnX (X = O, S, Se, Te);spin-hamiltonian parameters;atomic screening constants;magnetic;semiconductor;paramagnetic resonance;electronic states;optical;spectra;local-structure;scf functions;ferromagnetism;impurities","originalKeyword":"Crystal-fields and spin Hamiltonians;electron paramagnetic resonance;(EPR);Fe(3+);ZnX (X = O, S, Se, Te);spin-hamiltonian parameters;atomic screening constants;magnetic;semiconductor;paramagnetic resonance;electronic states;optical;spectra;local-structure;scf functions;ferromagnetism;impurities"}],"language":"en","publisherId":"0217-9849_2010_17_1","title":"THEORETICAL STUDIES ON THE GYROMAGNETIC FACTORS FOR Fe(3+) IN ZnX (X = O, S, Se, Te)","volume":"24","year":"2010"},{"abstractinfo":"This paper presents a cluster approach for the calculations of the absorption band positions and the g factor of d(2) tetrahedral cluster. In the approach, the different modifications of e and t(2) orbitals of d electrons and the contribution from the spin-orbit coupling of ligands to the EPR g factor due to the mixing of d(2) ions with the ligands are considered. The calculated band positions and g factor for ZnX : V3+ (X = S, Se, Te) crystals show good agreement with the observed values by using only two adjustable parameters. The contribution from the spin-orbit coupling of ligands to the g factor is discussed. (C) 1998 Elsevier Science B.V. All rights reserved.","authors":[],"categoryName":"|","doi":"","fpage":"79","id":"a2825bd3-3d5c-4a05-ac0b-0abec92de76a","issue":"42737","journal":{"abbrevTitle":"PBM","id":"b1289047-807c-4b57-bffc-a126ac2ffa2a","issnPpub":"0921-4526","publisherId":"PBM","title":"Physica B-Condensed Matter"},"keywords":[{"id":"62110aac-66ab-4c42-8b0b-281ee36ea4ab","keyword":"crystal- and ligand-field theory;optical spectra;electron paramagnetic;resonance;spin-orbit coupling;V3+ ZnX (X = S, Se, Te);vanadium centers;znte crystals","originalKeyword":"crystal- and ligand-field theory;optical spectra;electron paramagnetic;resonance;spin-orbit coupling;V3+ ZnX (X = S, Se, Te);vanadium centers;znte crystals"}],"language":"en","publisherId":"0921-4526_1998_42737_2","title":"Explanations of the optical spectra and g factor for V3+ ions in ZnX (X = S, Se, Te) crystals","volume":"253","year":"1998"},{"abstractinfo":"The spin Hamiltonian parameters (g factors and the hyperfine structure constants) for the cubic Mn(2+) centers in ZnX (X = S, Se, Te) and CdTe are investigated theoretically using the perturbation formulas of these parameters for a tetrahedral 3d(5) cluster containing both the crystal-field and charge-transfer contributions. The relevant molecular orbital coefficients are uniformly determined from the cluster approach, and the calculated spin Hamiltonian parameters are in good agreement with the observed values. The g-shifts of the g factors related to the pure spin value g(s) (approximate to 2.0023) arising from the charge transfer contributions are opposite (positive) in sign and much larger in magnitude than those from the crystal field contributions. On the other hand, the contributions from the charge-transfer mechanism to the hyperfine structure constants are the same in sign and about 20%-30% in magnitude of those from the crystal-field mechanism. The importance of the charge transfer contributions increases significantly with the increase of the covalency and the spin-orbit coupling coefficient of the ligand, i.e., S(2-) < Se(2-) < Te(2-).","authors":[],"categoryName":"|","doi":"","fpage":"301","id":"e1e8c4e9-87fe-469a-b679-9fe82f869629","issue":"5","journal":{"abbrevTitle":"CJOP","id":"6f469fcc-d823-467d-a637-87d35a67e729","issnPpub":"0008-4204","publisherId":"CJOP","title":"Canadian Journal of Physics"},"keywords":[{"id":"1ca943d6-c2f0-43d8-a1c7-6eb6af0a7e27","keyword":"ii-vi compounds;atomic screening constants;paramagnetic resonance;scf;functions;semiconductors;znse;impurities;crystals;spectra;ions","originalKeyword":"ii-vi compounds;atomic screening constants;paramagnetic resonance;scf;functions;semiconductors;znse;impurities;crystals;spectra;ions"}],"language":"en","publisherId":"0008-4204_2010_5_1","title":"Investigations of the spin Hamiltonian parameters for the cubic Mn(2+) centers in ZnX (X = S, Se, Te) and CdTe","volume":"88","year":"2010"},{"abstractinfo":"采用真空共蒸发法制备了Cd_(1-x)Zn_xS多晶薄膜,研究了Cd_(1-x)Zn_xS(x=0.88)多晶薄膜的结构与光电特性.XRD的结果表明,0<x≤0.9,Cd_(1-x)Zn_xS薄膜为六方结构,高度择优取向;荧光光谱分析与Vegard定理的结果以及石英振荡法监测的Cd_(1-x)Zn_xS多晶薄膜的组分吻合;制备的Cd_(1-x)Zn_xS多晶薄膜的光学透射谱的吸收边随Zn含量的增加发生蓝移,其光学能隙调制在CdS与ZnS能隙之间;最后测量了Cd_(1-x)Zn_xS薄膜室温电阻率及暗电导率随温度的变化情况,计算了Cd_(1-x)Zn_xS薄膜的电导激活能.","authors":[{"authorName":"孙震","id":"6deed994-a96b-40ef-856c-371ba961c37c","originalAuthorName":"孙震"},{"authorName":"谢晗科","id":"42715b04-2867-46a3-83a8-70fee1341495","originalAuthorName":"谢晗科"},{"authorName":"狄霞","id":"7ff5f1c6-0fd7-4551-9b23-93b18e45bd30","originalAuthorName":"狄霞"},{"authorName":"李卫","id":"493b3264-d50c-4c1e-b5cd-47137ecddc63","originalAuthorName":"李卫"},{"authorName":"冯良桓","id":"e48b1e4a-c902-455b-a634-a5f616dc3e62","originalAuthorName":"冯良桓"},{"authorName":"张静全","id":"10eee476-2446-4b62-a2d8-737bd1a543a8","originalAuthorName":"张静全"},{"authorName":"武莉莉","id":"f073bf20-8301-4977-b913-1f81ed032e41","originalAuthorName":"武莉莉"},{"authorName":"黎兵","id":"8f257464-86ef-4f93-a7ce-e88b522c230b","originalAuthorName":"黎兵"},{"authorName":"雷智","id":"7e139feb-157f-4aa0-b7d5-6004cf5a1c0f","originalAuthorName":"雷智"}],"doi":"","fpage":"235","id":"f9ab566d-2d59-40ab-8f6d-08c6020af98d","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ef227806-f2a8-44b8-ab01-e0f8dd274535","keyword":"Cd_(1-x)Zn_xS","originalKeyword":"Cd_(1-x)Zn_xS"},{"id":"84e063e6-240c-4ca2-a133-b8fac9a196ef","keyword":"多晶薄膜","originalKeyword":"多晶薄膜"},{"id":"e9096553-ccaa-4ff8-bc5b-b2ac80170a05","keyword":"共蒸发","originalKeyword":"共蒸发"},{"id":"a8ead5d4-f805-4be3-a3eb-9a37a45e3046","keyword":"光学能隙","originalKeyword":"光学能隙"},{"id":"28e94cce-d755-46e0-a79c-3d405666a666","keyword":"电导激活能","originalKeyword":"电导激活能"}],"language":"zh","publisherId":"gncl201002016","title":"Cd_(1-x)Zn_xS(x=0.88)多晶薄膜的制备及性能研究","volume":"41","year":"2010"},{"abstractinfo":"用极谱法分析电沉积CdTe 半导体薄膜CdTe 的含量随电沉积电位、沉积温度和热处理温度的变化,获得CdTe 原子数之比几乎为11的CdTe 薄膜。热处理能改变CdTe 薄膜的导电类型。","authors":[{"authorName":"郭也平","id":"da0a4367-48ef-4cb9-9a90-93fdc9429d01","originalAuthorName":"郭也平"},{"authorName":"邓薰南","id":"30c9f6bd-1f53-4806-8c4d-4cd1d11f08e4","originalAuthorName":"邓薰南"},{"authorName":"张红青","id":"0176874c-e340-47bf-ac2e-5bcb80fdc3a3","originalAuthorName":"张红青"}],"categoryName":"|","doi":"","fpage":"494","id":"d47f8668-4a17-4c52-88b9-84b1a4fcd140","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"5bab72de-ec2a-463d-bba5-cba409ce17c6","keyword":"极谱分析","originalKeyword":"极谱分析"},{"id":"4c1d8080-f472-4d1e-8e03-a74c35a78e09","keyword":"CdTe thin films","originalKeyword":"CdTe thin films"},{"id":"31623c01-60cb-4d2f-be92-b0e1f8c901c7","keyword":"electrodeposit","originalKeyword":"electrodeposit"}],"language":"zh","publisherId":"1005-3093_1991_6_1","title":"电沉积CdTe半导体薄膜CdTe含量的极谱分析","volume":"5","year":"1991"},{"abstractinfo":"利用水热法制备了Cd(SxSe1-x)颜料,借助于CIE色度、XRD及SEM等手段研究了Cd(SxSe1-x)色度与反应温度、反应时间以及前驱物配比之间的关系,并对Cd(SxSe1-x)的合成机理进行了研究.结果表明,反应温度为200℃、反应时间为4h、前驱物配比m(Cd)∶m(S)∶m(Se)=1∶0.74∶0.26时可制得结晶良好的纳米Cd(SxSe1-x)大红颜料:研究发现Cd(SxSe1-x)晶体的晶面间距d与端元组分CdS含量呈直线关系.","authors":[{"authorName":"陆彩飞","id":"190d89ea-fe30-4b40-a0d6-50ee32a30e09","originalAuthorName":"陆彩飞"},{"authorName":"王秀峰","id":"c11a191f-8fef-4ac5-ab2f-c0620cdcc5af","originalAuthorName":"王秀峰"},{"authorName":"苗鸿雁","id":"83c106a6-4235-42f2-bec5-5f736a9e7c1e","originalAuthorName":"苗鸿雁"},{"authorName":"罗宏杰","id":"d004781b-0c74-489f-a3e7-e26baa034c5c","originalAuthorName":"罗宏杰"},{"authorName":"郭振琪","id":"e4d54ad0-f87d-45df-bc30-03f69d7b9279","originalAuthorName":"郭振琪"}],"doi":"10.3969/j.issn.1001-1625.2000.01.008","fpage":"23","id":"8fd93806-5cb3-477e-a854-cd66c23cc58c","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"4c621474-6876-4cbf-82d8-d90578e4d53e","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"e04e88f7-7caf-4b4c-8d12-f880c4026b2a","keyword":"Cd(SxSe1-x)","originalKeyword":"Cd(SxSe1-x)"},{"id":"b5e59949-5a1e-498a-8d7f-5e41162358a6","keyword":"颜料","originalKeyword":"颜料"}],"language":"zh","publisherId":"gsytb200001008","title":"Cd(SxSe1-x)颜料的水热合成","volume":"19","year":"2000"},{"abstractinfo":"采用改进的垂直布里奇曼法(MVB)分别生长了A1掺杂和In掺杂的Cd0.9Zn0.1Te晶体,并对比分析了掺杂元素对晶体性能的影响.在相同的工艺条件下,A1掺杂晶体获得了6 × 109~2 × 1010Ω·cm的高电阻率,呈弱p或弱n型导电;In掺杂晶体电阻率在105Ω·cm数量级,呈n型导电;A1掺杂晶体在波数4000~500cm-1范围内红外透过率平直且较高,而In掺杂晶体红外透过率随波数下降而降低,在波数1250cm-1处降至零.采用A1掺杂晶片制备的探测器对241Am 59.54keV射线的能量分辨率为14%,表明所生长A1掺杂晶体基本满足了探测器材料使用要求.","authors":[{"authorName":"刘伟华","id":"399458e5-fe3b-4437-9550-15a9b83ecf02","originalAuthorName":"刘伟华"},{"authorName":"介万奇","id":"bd9bd238-3928-490e-a8bc-9a2039dcba0f","originalAuthorName":"介万奇"},{"authorName":"王涛","id":"cec1e79e-95c6-4ea1-9048-9fee4471691e","originalAuthorName":"王涛"},{"authorName":"徐凌燕","id":"26690015-752b-4e4c-846b-4a3ce9a38572","originalAuthorName":"徐凌燕"},{"authorName":"徐亚东","id":"88dbdc3e-4105-478a-9049-d2eee7cebb8b","originalAuthorName":"徐亚东"}],"doi":"","fpage":"529","id":"59bb1592-acae-4250-b102-f1fdfaae54da","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e5062d61-f6cb-46a8-a5d6-4e62f9ae24a5","keyword":"Cd0.9Zn0.1Te","originalKeyword":"Cd0.9Zn0.1Te"},{"id":"c06e4a0b-68d7-43c5-9fc4-5ff966e6786f","keyword":"Al掺杂","originalKeyword":"Al掺杂"},{"id":"03ba1414-042b-4370-8f1c-357d798578f5","keyword":"霍尔测试","originalKeyword":"霍尔测试"},{"id":"ae3884bd-04ea-4c57-873e-cc1767f66ed1","keyword":"红外透过率","originalKeyword":"红外透过率"}],"language":"zh","publisherId":"gncl200904001","title":"Cd0.9 Zn0.1 Te晶体的A1掺杂研究","volume":"40","year":"2009"}],"totalpage":7030,"totalrecord":70299}