材料科学技术(英文), 2016, 32(9): 956-965.
10.1016/j.jmst.2016.07.012
Effect of Amino-, Methyl- and Epoxy-Silane Coupling as a Molecular Bridge for Formatting a Biomimetic Hydroxyapatite Coating on Titanium by Electrochemical Deposition

Tan Guoxin 1,*,, , Ouyang Kongyou 1, , Wang Hang 1, , Zhou Lei 2, , Wang Xiaolan 2, , Liu Yan 1, , Zhang Lan 3, , Ning Chengyun 2,

1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
2. College of Materials Science and Technology, South China University of Technology, Guangzhou 510641, China;
3. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China

The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CaP) coating, as well as bone cell adhesion and proliferation. Methyl group (—CH3), amino group (—NH2), and epoxy group (—glyph name—C(O)C) were introduced onto the bioactive Ti surface using self-assembled monolayers (SAMs) with different silane coupling agents as molecular bridges. The effect of the surface functional groups on the growth features of the CaP crystals was analyzed (including chemical compositions, element content, minerals morphology and crystal structure etc.). CH3-terminated SAMs showed a hydrophobic surface and others were hydrophilic by contact angle measurement; NH2-terminated SAMs showed a positive charge and others were negatively charged using zeta-potential measurement. Scanning electron microscopy results confirmed that flower-like structure coatings consisting of various pinpoint-like crystals were formatted by different functional groups of silane coupling, and the CaP coatings were multicrystalline consisting of hydroxyapatite (HA) and precursors. CaP coating of CH3-terminated SAMs exhibited more excellent crystallization property as compared to coatings of —NH2 and —C(O)C groups. In vitro MC3T3-E1 cells adhesion and proliferation were performed. The results showed that CaP coatings on silane coupling functionalized surfaces supported cell adhesion and proliferation. Thus, these functional groups of silane coupling on Ti can form homogeneous and oriented nano-CaP coatings and provide a more biocompatible surface for bone regeneration and biomedical applications.

引用: Tan Guoxin, Ouyang Kongyou, Wang Hang, Zhou Lei, Wang Xiaolan, Liu Yan, Zhang Lan, Ning Chengyun Effect of Amino-, Methyl- and Epoxy-Silane Coupling as a Molecular Bridge for Formatting a Biomimetic Hydroxyapatite Coating on Titanium by Electrochemical Deposition. 材料科学技术(英文), 2016, 32(9): 956-965. doi: 10.1016/j.jmst.2016.07.012
参考文献:
[1] H.S. Alghamdi, R. Bosco, J.J. van den Beucken, X.F. Walboomers, J.A. Jansen. Biomaterials, 34(2013), pp. 3747-3757
[2] A. Sugawara, K. Asaoka, S.J. Ding. J. Mater. Chem. B Mater. Biol.Med, 1(2013), pp. 1081-1089
[3] H. Schliephake, D. Scharnweber. J.Mater. Chem, 18(2008), pp. 2404-2414
[4] A. Jillavenkatesa, R.A. Condrate. J. Mater.Sci, 33(1998), pp. 4111-4119
[5] S.J. Ding.Biomaterials, 24(2003), pp. 4233-4238
[6] X. Zheng, M. Huang, C. Ding.Biomaterials, 21(2000), pp. 841-849
[7] G. Tan, L. Zhou, C. Ning, Y. Tan, G. Ni, J. Liao, P. Yu, X. Chen. Appl.Surf. Sci, 279(2013), pp. 293-299
[8] W. Ye, X.X. Wang.Mater. Lett, 61(2007), pp. 4062-4065
[9] H. Wang, N. Eliaz, Z. Xiang, H.P. Hsu, M. Spector, L.W. Hobbs.Biomaterials, 27(2006), pp. 4192-4203
[10] C. He, G. Xiao, X. Jin, C. Sun, P.X. Ma.Adv. Funct. Mater, 20(2010), pp. 3568-3576
[11] R. Hu, C. Lin, H. Shi, H. Wang. Mater.Chem. Phys, 115(2009), pp. 718-723
[12] X. Lu, Z. Zhao, Y. Leng. J.Cryst. Growth, 284(2005), pp. 506-516
[13] Y. Parcharoen, P. Kajitvichyanukul, S. Sirivisoot, P. Termsuksawad. Appl.Surf. Sci, 311(2014), pp. 54-61
[14] G. Ciobanu, O. Ciobanu. Mater.Sci. Eng. C Mater. Biol. Appl, 33(2013), pp. 1683-1688
[15] G.S. Han, S. Lee, D.W. Kim, D.H. Kim, J.H. Noh, J.H. Park, S. Roy, T.K. Ahn, H.S. Jung.Cryst. Growth Des, 13(2013), pp. 3414-3418
[16] L.T. de Jonge, S.C. Leeuwenburgh, J.G. Wolke, J.A. Jansen. Pharm. Res, 25(2008), pp. 2357-2369
[17] X. Chen, W. Wang, S. Cheng, B. Dong, C.Y. Li.ACS Nano, 7(2013), pp. 8251-8257
[18] M.S. Djo?i?, V. Pani?, J. Stojanovi?, M. Mitri?, V.B.Mi?kovi?-Stankovi?. Colloids Surf. A Physicochem. Eng. Asp, 400(2012), pp. 36-43
[19] N. Dumelie, H. Benhayoune, D. Richard, D. Laurent-Maquin, G. Balossier. Mater.Charact, 59(2008), pp. 129-133
[20] S.H. Kim, Y.H. Jeong, H.C. Choe, W.A. Brantley.Surf. Coat. Technol, 259(2014), pp. 281-289
[21] Q. Liu, J. Ding, F.K. Mante, S.L. Wunder, G.R. Baran.Biomaterials, 23(2002), pp. 3103-3111
[22] G.K. Toworfe, R.J. Composto, I.M. Shapiro, P. Ducheyne.Biomaterials, 27(2006), pp. 631-642
[23] D.J. Wu, Z.X. Liu, C.Z. Gao, X.C. Shen, X.M. Wang, H. Liang. Surf.Coat. Technol, 228(2013), pp. S24-S27
[24] F.R. Maia, S.J. Bidarra, P.L. Granja, C.C. Barrias.Acta Biomater, 9(2013), pp. 8773-8789
[25] D.P. Liu, P. Majewski, B.K.O'Neill, Y. Ngothai, C.B. Colby. J. Biomed. Mater. Res. A, 77(2006), pp. 763-772
[26] G. Tan, Y. Tan, G. Ni, G. Lan, L. Zhou, P. Yu, J. Liao, Y. Zhang, Z. Yin, H. Wang, C. Ning. J.Mater. Sci. Mater. Med, 25(2014), pp. 1875-1884
[27] Y. Xiao, T. Gong, S. Zhou.Biomaterials, 31(2010), pp. 5182-5190
[28] M.P. Neupane, I.S. Park, T.S. Bae, H.K. Yi, F. Watari, M.H. Lee.Mater. Chem. Phys, 134(2012), pp. 536-541
[29] H. Shao, C. Yu, X. Xu, J. Wang, R. Zhai, X. Wang. Appl.Surf. Sci, 257(2010), pp. 1649-1654
[30] M.A. Martins, C. Santos, M.M. Almeida, M.E. Costa.J. Colloid Interface Sci, 318(2008), pp. 210-216
[31] E. Ajami, K.F.Aguey-Zinsou. J. Mater. Sci. Mater. Med, 22(2011), pp. 1813-1824
[32] L. Chen, J.M.McCrate, J.C. Lee, H. Li. Nanotechnology, 22(2011) 105708
[33] C. Yang, K. Cheng, W. Weng, C. Yang. J.Mater. Sci. Mater. Med, 20(2009), pp. 667-672
[34] G.B. Varadwaj, S. Rana, K.M. Parida.Dalton Trans, 42(2013), pp. 5122-5129
[35] M. Bariana, M.S. Aw, M. Kurkuri, D. Losic. Int.J. Pharm, 443(2013), pp. 230-241
[36] S. Bodhak, S. Bose, A. Bandyopadhyay.Acta Biomater, 5(2009), pp. 2178-2188
[37] G.D. Moon, T.I. Lee, B. Kim, G. Chae, J. Kim, S. Kim, J.M. Myoung, U. Jeong.ACS Nano, 5(2011), pp. 8600-8612
[38] F. Gao, P.M.A.Sherwood. Surf. Interface Anal, 45(2013), pp. 742-750
[39] K. Schickle, R. Kaufmann, D.F.Duarte Campos, M. Weber, H. Fischer. J. Eur. Ceram. Soc, 32(2012), pp. 3063-3071
[40] A.E. Porter, T. Buckland, K. Hing, S.M. Best, W. Bonfield. J.Biomed. Mater. Res. A, 78(2006), pp. 25-33
[41] R.A. Surmenev, M.A. Surmeneva, A.A. Ivanova.Acta Biomater, 10(2014), pp. 557-579
[42] M. Motskin, D.M. Wright, K. Muller, N. Kyle, T.G. Gard, A.E. Porter, J.N. Skepper.Biomaterials, 30(2009), pp. 3307-3317
[43] S.W. Myung, Y.M. Ko, B.H. Kim.Appl. Surf. Sci, 287(2013), pp. 62-68
[44] Z. Shi, X. Huang, Y. Cai, R. Tang, D. Yang.Acta Biomater, 5(2009), pp. 338-345
[45] W. Cui, X. Li, C. Xie, H. Zhuang, S. Zhou, J. Weng.Biomaterials, 31(2010), pp. 4620-4629
[46] H.M. Herath, L. Di Silvio, J.R. Evans.Mater. Sci. Eng. C Mater. Biol. Appl, 57(2015), pp. 363-370
[47] S. Okada, A. Nagai, Y. Oaki, J. Komotori, H. Imai.Acta Biomater, 7(2011), pp. 1290-1297

相似文献: