{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文采用直流四电极法研究了Sn-3.5Ag-3.5Bi焊料熔体在连续两轮的升降温过程中电阻率随温度的变化关系,以此为基础进一步研究了该合金在650℃和800℃保温7h及随后的升温过程中电阻率的变化规律.结果表明,Sn-3.5Ag-3.5Bi合金中存在-结构转变,并且该结构转变在第一轮升温后是可逆的.结合保温及随后升温实验结果可知在第一轮升温过程中的结构转变是由不可逆和可逆两种不同类型的结构转变组成的.文章还从短程有序的角度分析了引起这两种转变的机制.","authors":[{"authorName":"李小蕴","id":"eccea202-5faa-48aa-955a-eb888121c09b","originalAuthorName":"李小蕴"},{"authorName":"吴炜","id":"2276688a-66c8-46bc-99b6-72179ed721eb","originalAuthorName":"吴炜"},{"authorName":"祖方遒","id":"487bb0ee-56d1-4657-9a04-7d53b2cb9c06","originalAuthorName":"祖方遒"}],"doi":"","fpage":"40","id":"3a12563e-e901-4223-b3c6-4812acd73e63","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"42661e58-b6d4-41da-98f4-13ae9a769dd8","keyword":"Sn-Ag-Bi焊料","originalKeyword":"Sn-Ag-Bi焊料"},{"id":"e236459a-093a-4e2b-a6c2-82ed4b1ae87a","keyword":"结构转变","originalKeyword":"液液结构转变"},{"id":"f8828ea6-6066-477c-814c-e5e1c06e38c3","keyword":"电阻率","originalKeyword":"电阻率"}],"language":"zh","publisherId":"jsgncl201106009","title":"Sn-Ag-Bi焊料熔体温度诱导-结构转变的研究","volume":"18","year":"2011"},{"abstractinfo":"凝固时的固界面通常为平面、胞状、枝晶状.在某些条件下结晶,会形成双胞结构、三胞结构、倾斜枝晶、密集分枝和退化枝晶等不规则界面.本文介绍了不规则界面的形貌特征,讨论了界面能各向异性、压力和温度对界面形貌的影响以及规则界面与不规则界面的相互转变等问题.当晶体沿着某些特定位向生长时,界面能接近于各向同性,晶体以密集分枝方式生长;当界面能各向异性时,大多数晶体以规则枝晶方式生长.在VF工艺中,低压下得到密集分枝界面;压力增加,界面以枝晶方式生长;压力进一步增加,重新得到密集分枝界面.","authors":[{"authorName":"李晨希","id":"12f33980-17e9-4a27-8ea3-195ee191004c","originalAuthorName":"李晨希"},{"authorName":"伞晶超","id":"fdf604c1-2bf0-48d7-b2c1-8fd09e53b928","originalAuthorName":"伞晶超"},{"authorName":"郭太明","id":"0fd9f748-ced4-49cf-a43c-fdc150d2e012","originalAuthorName":"郭太明"},{"authorName":"王宏","id":"ee7f9a46-92e3-4dfd-9b4f-a923c29af94f","originalAuthorName":"王宏"},{"authorName":"王凤翔","id":"8809ee0c-c986-489a-8313-cc58659e5094","originalAuthorName":"王凤翔"}],"doi":"10.3969/j.issn.1000-985X.2005.05.022","fpage":"870","id":"5e5a3612-f3dc-4ab2-90bb-e68bd5401af6","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"593d20e4-ac90-44e8-8db7-075fe3449565","keyword":"凝固","originalKeyword":"凝固"},{"id":"25a032c3-01e3-4c84-9739-db848ee11172","keyword":"固界面","originalKeyword":"固液界面"},{"id":"4482b3b0-8d7b-469e-8bc0-18d62e1dadbe","keyword":"不规则界面形貌","originalKeyword":"不规则界面形貌"}],"language":"zh","publisherId":"rgjtxb98200505022","title":"固界面形貌及其转变","volume":"34","year":"2005"},{"abstractinfo":"为了了解旋转对邱克拉斯基(Czochralski)晶体生长结构池内熔体流动的影响,利用有限差分法进行了三维非稳态数值模拟,坩埚外半径为50 mm,晶体半径为15 mm,池深度为50 mm.结果表明,当旋转速度较低时,流动为稳态轴对称流动,随着转速的提高,流动会转化为三维非稳态振荡流动;晶体与坩埚同向旋转时,流动转化的临界转速较高,反向旋转时,临界转速较低;晶体单独旋转时,速度波周向速度远小于晶体旋转速度,坩埚单独旋转时,速度波周向速度与坩埚旋转速度保持一致;坩埚转速越快,速度波动幅度和波数越小.","authors":[{"authorName":"吴春梅","id":"c20e6c71-85b0-4da0-bfb5-6452a20ff96d","originalAuthorName":"吴春梅"},{"authorName":"李友荣","id":"7b6bcfc6-e59c-4fe4-90b0-2324c50915b9","originalAuthorName":"李友荣"},{"authorName":"彭岚","id":"6ea40a83-3fc6-42db-8a1e-60c80804a093","originalAuthorName":"彭岚"},{"authorName":"吴双应","id":"8204f538-464b-4ce1-add8-230bc0434cc4","originalAuthorName":"吴双应"}],"doi":"","fpage":"1181","id":"8e5e1de6-ddff-4daa-a9c7-65d822fe18e9","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9c818a1d-342c-482c-93dd-dc1ce6aad8a6","keyword":"旋转","originalKeyword":"旋转"},{"id":"0d423dbd-d92c-4ec1-a640-27187d577f1f","keyword":"对流","originalKeyword":"对流"},{"id":"e53be630-766d-44b7-92b7-5e300ab7061f","keyword":"稳定性","originalKeyword":"稳定性"},{"id":"a01bd779-afd4-41e6-a992-167f33cd7788","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201007026","title":"邱克拉斯基结构池内旋转驱动流动及转变","volume":"31","year":"2010"},{"abstractinfo":"Fe3O4纳米粒子与离子型改性剂N, N-二癸基-N-甲基-N-三甲氧基硅正丙基氯化铵进行接枝反应, 再采用反离子脂肪醇聚氧乙烯醚磺酸盐的长链阴离子交换Cl-, 在Fe3O4纳米粒子表面得到具有阴、阳离子双电层结构的表面处理层, 制备出了无溶剂Fe3O4纳米流体。分析结果表明, 表面处理层已成功地接枝在Fe3O4纳米粒子表面, 改性的Fe3O4纳米粒子呈单分散, 其损耗剪切模量G''明显大于储能剪切模量G', 并具有明显的流体行为, 室温下存放一年状态稳定, 流动性良好。","authors":[{"authorName":"檀雨默张爱波郑亚萍兰岚陈伟","id":"57f2f696-bb74-4c64-9df8-be409678cba8","originalAuthorName":"檀雨默张爱波郑亚萍兰岚陈伟"}],"categoryName":"|","doi":"","fpage":"561","id":"8c0c7533-b8bd-4acc-8e2b-f8eb82568fd7","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"c3d8d6a0-5144-4c8f-a64d-84d8a8ebc401","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"ca9dfd52-2ae0-405b-bfae-85e263179527","keyword":"magnetic nanoparticles","originalKeyword":"magnetic nanoparticles"},{"id":"f5f27b54-5b88-4164-9065-f8f7f9795dfe","keyword":"surface modification","originalKeyword":"surface modification"},{"id":"ec03e5b1-4870-4957-a35c-551fecc3bd3c","keyword":"solvent–free nanofluids","originalKeyword":"solvent–free nanofluids"},{"id":"1bc7c176-0641-482c-89d7-1fa7f625947a","keyword":"solid–liquid transformation","originalKeyword":"solid–liquid transformation"}],"language":"zh","publisherId":"1005-3093_2011_6_1","title":"具有固--转变的磁性Fe3O4纳米流体的制备、结构及性能","volume":"25","year":"2011"},{"abstractinfo":"建立了高0.8m,截面为0.1 m×0.01 m的可视化浆态床实验系统,采用空气、水和玻璃粉作为浆态床中气固三相,研究了颗粒粒径为58~75 μm和106~150 μ,m,固相体积分数为3%和9%时的宏观流动特性.试验获得了不同物料体系下的床层压降随气体雷诺数的变化规律,同时得到了颗粒浓度对流型转变气速的影响.找到均匀流流型向过渡流型转变的第一转变点和从过渡流型向非均匀流型转变的第二转变点的取值范围.结果表明:三相体系的压差值随着气体雷诺数的增大而趋于一个稳定值,颗粒粒径增大会使体系压差值增大;固体颗粒浓度的增加,会使第二转变点取值减小,而颗粒粒径对流型转变气速影响很小.固相浓度的增加,会加快三相体系的失稳,在更低的气速下进入到非均相端动流动状态中.","authors":[{"authorName":"李蔚玲","id":"1ce558ce-dbf2-410e-ad89-fe3b92d2b7b8","originalAuthorName":"李蔚玲"},{"authorName":"钟文琪","id":"50ef9c0f-b440-4f47-890e-c68f164fd7b1","originalAuthorName":"钟文琪"},{"authorName":"金保昇","id":"a949731c-bef7-4d80-8480-38a8956ceac1","originalAuthorName":"金保昇"},{"authorName":"肖睿","id":"b526dc2f-56d2-4070-805a-363e3cadf8c7","originalAuthorName":"肖睿"},{"authorName":"贺婷婷","id":"f15b50c2-4083-4b26-a288-6db6a9069eb9","originalAuthorName":"贺婷婷"}],"doi":"","fpage":"100","id":"cc767436-0b7a-48bd-a31f-42c03b7550b6","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"d7be6f9f-1ad6-46d0-9a4b-45c2b90ff8fd","keyword":"气固三相流动","originalKeyword":"气液固三相流动"},{"id":"24ffdb1c-a360-4ec0-92e5-3602b3fd8f15","keyword":"浆态床","originalKeyword":"浆态床"},{"id":"7469435a-c827-4b29-8402-e1e10099509a","keyword":"床层压降","originalKeyword":"床层压降"},{"id":"e358dca1-a50d-4e62-abfd-874548bdc3de","keyword":"转变气速","originalKeyword":"转变气速"}],"language":"zh","publisherId":"gcrwlxb201401023","title":"气固三相浆态床流型转变特性的试验研究","volume":"35","year":"2014"},{"abstractinfo":"研究了ZL205A铝合金在近相线不同等温温度和等温时间条件下的微观组织转变规律.结果表明,α(Al)晶粒直径与等温时间满足关系式-r3--r03=k'-t.系数k'值随等温温度变化,在622℃和631℃条件下对应的k'值分别为4,288×10-10 m3/s和5,962×10-10 m3/s.实验合金的等温过程基本上分为球化预备阶段、球化阶段和长大粗化阶段.等温温度提高,固相体积分数也随之降低,有利于加速α(Al)晶粒球化和获得均匀的球状等轴固相颗粒.实验合金等温组织演变过程是溶质传输和空位扩散、以及固界面张力共同作用的结果.溶质扩散作用在开始阶段起主导作用,而界面张力在中后期占主要作用.","authors":[{"authorName":"杨光昱","id":"343c4124-7917-466c-a076-f8ae71121337","originalAuthorName":"杨光昱"},{"authorName":"介万奇","id":"094098f0-8c82-4fa7-96ce-04e311d2084b","originalAuthorName":"介万奇"},{"authorName":"张润强","id":"74b96b1e-b1bc-43c2-9e8a-fafd458a6358","originalAuthorName":"张润强"},{"authorName":"郝启堂","id":"743cac37-9d5e-44e1-a669-ff3ddac9a12b","originalAuthorName":"郝启堂"},{"authorName":"李杰华","id":"84494abb-6f81-4521-bdf4-c4dfb613ef01","originalAuthorName":"李杰华"}],"doi":"","fpage":"1717","id":"68b0d9d5-b90b-4ce7-a644-06fd1c74a1d9","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"0bc889d1-bfe9-45af-85e6-b8ba72367dbb","keyword":"ZL205A铝合金","originalKeyword":"ZL205A铝合金"},{"id":"279c97e1-05bd-41c1-be35-78132fb8d5f2","keyword":"等温半固态","originalKeyword":"等温半固态"},{"id":"99f69b0e-3e09-432f-bc15-af943c59a132","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"dfdddc97-0115-4dd2-aaff-70acb615d9e1","keyword":"粗化","originalKeyword":"粗化"}],"language":"zh","publisherId":"xyjsclygc200710005","title":"ZL205A铝合金近相线等温半固态组织转变特性","volume":"36","year":"2007"},{"abstractinfo":"磁流变(MRF)的力学性能与其微结构密切相关,而其微结构的形成与演化受多种因素的影响。研究了静磁场和剪切作用下磁流变结构的形成与演化。在静磁场作用下,分析了颗粒体积分数和磁感应强度对其微结构的影响;在剪切作用下,观测了微结构的动态演化过程。实验结果表明,在相同磁感应强度下,随着颗粒体积分数的增加,通链数目逐渐增多,孤立链减少,且由相互独立的单链转变为相互聚集的束链,在相同颗粒体积分数下,随着磁感应强度的增加,颗粒链的间距增大,链的聚合度明显提高;在剪切过程中,成功地捕捉到了磁流变颗粒链从形成→拉伸→断裂→重组的动态演化过程,当该过程达到动态平衡时,为磁流变提供了稳定的抵抗宏观剪切的能力。","authors":[{"authorName":"赵春伟","id":"d701d13c-ca8f-416b-9f7e-bd397bae0663","originalAuthorName":"赵春伟"},{"authorName":"彭向和","id":"7f906a37-7b66-4c43-b40a-09ecf99cfc25","originalAuthorName":"彭向和"},{"authorName":"史旭东","id":"82147999-b12f-491a-8193-db8c6baebd91","originalAuthorName":"史旭东"}],"doi":"10.3969/j.issn.1001-9731.2014.10.010","fpage":"10049","id":"0cad799e-35e2-4920-af3f-1ef82904850a","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e05d9700-ce51-4fab-9304-611918f765ea","keyword":"磁流变","originalKeyword":"磁流变液"},{"id":"26d67af2-bd8d-482c-b6e9-5c51043ea064","keyword":"微结构","originalKeyword":"微结构"},{"id":"e846b752-99f8-4b7b-8606-09f3289f8376","keyword":"体积分数","originalKeyword":"体积分数"},{"id":"c7f660c4-544e-492a-97c8-0b9a9f0a250a","keyword":"磁感应强度","originalKeyword":"磁感应强度"},{"id":"01dd63f3-2654-4b04-850f-ac73f7863bcd","keyword":"剪切","originalKeyword":"剪切"}],"language":"zh","publisherId":"gncl201410010","title":"磁流变结构的实验观测","volume":"","year":"2014"},{"abstractinfo":"为了解环形池内耦合热溶-质毛细对流的转变特征,建立了环形池内的耦合热-溶质毛细对流的物理数学模型,采用有限容积法进行二维数值模拟,得到了环形池内耦合热-溶质毛细对流失稳的临界条件,并对耦合热-溶质毛细对流失稳机理进行了分析.结果表明:环形池内流态从稳态到非稳态的转变为霍普夫分岔;随着深宽比、半径比和普朗特数的增加,流动更容易失稳;当刘易斯数大于1时,临界毛细雷诺数随着刘易斯数的增大而减小,流动失稳是由于溶质Marangoni效应的主导作用和流动的惯性共同作用的结果;而当刘易斯数小于1时,随着刘易斯数的增大,临界毛细雷诺数增大,流动失稳则是由于热Marangoni效应的主导作用和流动的惯性共同作用的结果.","authors":[{"authorName":"唐经文","id":"76818032-6c7b-47dc-9782-5f8152c9e966","originalAuthorName":"唐经文"},{"authorName":"周永利","id":"34bb3ce8-ea5a-4b89-832e-6bd556aa9ffb","originalAuthorName":"周永利"},{"authorName":"龚振兴","id":"fdf66373-5d9b-4654-96ce-49dff0f8518d","originalAuthorName":"龚振兴"},{"authorName":"李友荣","id":"bbea2b9b-a114-4412-8e3b-1bec86555024","originalAuthorName":"李友荣"}],"doi":"","fpage":"134","id":"f14b3546-74df-42ab-8321-74c9ce51c078","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"420494ae-06ca-40b6-bcea-5e49f8a123d6","keyword":"热-溶质毛细对流","originalKeyword":"热-溶质毛细对流"},{"id":"5ee0266d-99b6-4e94-a6c5-4b5aa03dae20","keyword":"转变","originalKeyword":"转变"},{"id":"e55731d9-0d27-4ee5-b950-6c7958c29247","keyword":"环形池","originalKeyword":"环形液池"},{"id":"f3f3f958-e64c-4a89-abe7-3bcfcacf1936","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"cldb201220036","title":"环形池内耦合热-溶质毛细对流转变过程的二维数值模拟","volume":"26","year":"2012"},{"abstractinfo":"本文采用投加氨水沉淀法,利用含硫酸钛的废液制备出纳米二氧化钛.涉及的反应过程包括:硫酸钛与水的反应生成硫酸氧钛;硫酸氧钛水解形成偏钛酸;偏钛酸的热处理和脱水产生二氧化钛.二氧化钛的进一步热处理转变过程包括:非晶态二氧化钛的晶化转变;锐钛矿向金红石的高温相变.所制备的二氧化钛在350℃至700℃热处理可以获得单相锐钛矿相.锐钛矿颗粒尺度从350℃的9 nm增长到700℃的68 nm左右.在700~800 ℃之间处理,可获得锐钛矿相和金红石相双相组织.金红石颗粒尺度从800℃的83 nm增长到900℃的109 nm左右.900℃以上温度热处理可以获得单相金红石相.","authors":[{"authorName":"唐电","id":"1f8cd238-07a1-44e0-909c-a5b712a3f3d1","originalAuthorName":"唐电"},{"authorName":"叶城池","id":"c5cc5e3e-0c5b-48f1-ba94-f583be07fcc5","originalAuthorName":"叶城池"},{"authorName":"邵艳群","id":"8cebf316-8091-49da-ab69-278923f32e9f","originalAuthorName":"邵艳群"},{"authorName":"王欣","id":"62ad53cc-7a25-48f9-b924-5dd98fe62526","originalAuthorName":"王欣"}],"doi":"10.3969/j.issn.1009-6264.2007.z1.078","fpage":"319","id":"7e67ab37-138d-46c6-8886-5ff8e2559c55","issue":"z1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"e7c1b02e-8619-4642-9d36-3d260ca08bb5","keyword":"腐蚀","originalKeyword":"腐蚀液"},{"id":"24f5f610-10fe-43ff-b613-0a4db7c421bf","keyword":"纳米","originalKeyword":"纳米"},{"id":"9e3b3ab0-cfe1-42da-a1b4-6705b0cb5ab0","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"699c2d29-95c2-4dfd-86cf-d7eb9c7a33cc","keyword":"制备","originalKeyword":"制备"},{"id":"90c3c51c-334b-4e55-8695-43815d0eaa8a","keyword":"转变","originalKeyword":"转变"}],"language":"zh","publisherId":"jsrclxb2007z1078","title":"腐蚀回收制取纳米二氧化钛转变过程","volume":"28","year":"2007"},{"abstractinfo":"铸膜的熟化时间对膜内部微观孔结构具有较大影响.当天配制的铸膜制膜过程中首先发生瞬时-分相,稀聚合物相成核,所成膜内部形成有指状大孔的胞腔状结构.经一定熟化时间的铸膜,熟化过程中内部首先发生固-微相分离.制膜过程中,铸膜内微相区发生-波相分离,微晶固相区凝胶固化,形成网络状结构.当天配制的铸膜制得的PVDF膜,主要为β型结晶结构.随着铸膜熟化时间延长,所制得膜β型结晶所占比例减少,α型结晶所占比例增多.","authors":[{"authorName":"王许云","id":"4274a7ad-3960-44f0-9e06-3cabe627a28b","originalAuthorName":"王许云"},{"authorName":"张林","id":"c05dcd3a-736d-468a-9478-f08af7237966","originalAuthorName":"张林"},{"authorName":"陈欢林","id":"8c9b5a36-8d08-4f22-8100-dbd44a14a076","originalAuthorName":"陈欢林"},{"authorName":"周志军","id":"e503955a-3558-497f-8dec-419c3aa9a468","originalAuthorName":"周志军"}],"doi":"","fpage":"57","id":"33ca9980-1563-4367-9a7c-1528b7ca9433","issue":"7","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"9f837a9a-1bf0-4e40-8e1b-1368554763ce","keyword":"聚偏二氟乙烯(PVDF)","originalKeyword":"聚偏二氟乙烯(PVDF)"},{"id":"3e910762-b3d3-45c0-a015-880d136ebbbb","keyword":"相转化","originalKeyword":"相转化"},{"id":"a638d53f-edfa-42e1-9bd2-364bdc550243","keyword":"熟化时间","originalKeyword":"熟化时间"},{"id":"7b06e72d-9764-4731-9aac-d25067711b92","keyword":"成膜机理","originalKeyword":"成膜机理"},{"id":"01e4581b-c316-482e-9184-16bbd4828653","keyword":"结晶","originalKeyword":"结晶"}],"language":"zh","publisherId":"gfzclkxygc200907016","title":"铸膜熟化时间对制备PVDF微孔膜结构与结晶的影响","volume":"25","year":"2009"}],"totalpage":7996,"totalrecord":79958}