材料导报, 2017, 31(8): 17-30.
10.11896/j.issn.1005-023X.2017.08.004
多道次ECAE动态成型Al-Mg-Si合金导线组织与性能

周天国 1, , 陈田田 2, , 苏鑫 3, , 徐瑞 4, , 吴晓玉 5, , 胡静 6,

1.沈阳大学机械工程学院,沈阳,110044;
2.沈阳大学机械工程学院,沈阳,110044;
3.沈阳大学机械工程学院,沈阳,110044;
4.沈阳大学机械工程学院,沈阳,110044;
5.沈阳大学机械工程学院,沈阳,110044;
6.沈阳大学机械工程学院,沈阳,110044

借助S4800扫描电子显微镜、Philips DM420透射电子显微镜、SANS CMT5105电子万能材料试验机和QJ48双臂直流电桥,研究了多道次ECAE动态成型Al-Mg-Si合金导线的组织与性能.结果表明:4道次ECAE动态成型可制备平均尺寸在10 μm左右甚至更小的Al-Mg-Si合金导线晶粒.随着Mg、Si含量的增加,合金导线的抗拉强度增大,伸长率与等效导电率降低.经160~170 ℃/7 h时效处理后,Al-0.59%Mg-0.59%Si合金导线的抗拉强度、伸长率和等效导电率分别为305.71~309.63 MPa,4.7%~5.4%和55.18%IACS~56.33%IACS,与目前国产Al-Mg-Si合金导线(295 MPa,52.5%IACS)相比,导电性能显著提高.
关键词: Al-Mg-Si合金导线   多道次ECAE动态成型   时效处理   组织   力学性能   导电率{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对Ni-MH电池充电过程中氧的产生和不恰当的消除方式带来的内压升高和热量聚积使电池总体性能衰减很快的问题, 提出采用降低化学催化氧还原的比例, 而提高热量产生少的电催化氧还原比例的方法加以解决. 研究了电化学催化剂CoPc(酞菁钴)对Ni-MH电池浮充性能的影响. 实验结果表明采用合适的方式添加CoPc的电池具有较好的浮充性能. 其中在电解液中添加CoPc的电池具有最好的充电效率和循环能力; 2000次浮充以后其内压升高速度也最低.","authors":[{"authorName":"王芳","id":"eda7ac78-d6e1-4d1f-bc75-cd0241a3ad61","originalAuthorName":"王芳"},{"authorName":"吴锋","id":"74bfbcbc-74d3-4403-8967-3b943c481582","originalAuthorName":"吴锋"},{"authorName":"陈实","id":"cdcabb82-eec7-45bb-a27e-8c526fff9938","originalAuthorName":"陈实"},{"authorName":"王国庆","id":"cca49260-fa75-43c4-bcc8-f05f06dd4bfc","originalAuthorName":"王国庆"}],"doi":"","fpage":"609","id":"1f67b46e-2ae4-42f4-825e-e877b4d20789","issue":"5","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"d68b8568-b833-47db-9291-e92fbb7ab210","keyword":"Ni-MH电池","originalKeyword":"Ni-MH电池"},{"id":"7ac2f099-4310-4397-90a5-4e3a4f51ea31","keyword":"电化学催化剂","originalKeyword":"电化学催化剂"},{"id":"f6090b96-d8de-48b9-8478-d569a5b91d1c","keyword":"酞菁钴","originalKeyword":"酞菁钴"},{"id":"a03ec943-5828-4196-904a-62bc1886999a","keyword":"浮充","originalKeyword":"浮充"},{"id":"629287c5-9a15-435f-af4e-eec8910f3c5f","keyword":"内压","originalKeyword":"内压"},{"id":"eea94195-074c-49e1-bdf3-b3b79addf879","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"zgxtxb200405005","title":"电化学催化剂CoPc对Ni-MH电池浮充性能的影响","volume":"22","year":"2004"},{"abstractinfo":"面对全球化的能源危机,燃料电池由于其高效性和可重复使用性成为越来越具有潜力的能量转化设备.阴极发生的氧气还原反应对于燃料电池的性能十分重要,寻找高效的氧还原催化剂在很大程度上可以提高燃料电池的性能.传统的氧还原催化剂是贵金属铂,但是铂的价格十分高,较差的稳定性和选择性限制了它的商业化应用,因此找到一种廉价高效的非贵金属氧还原催化剂来代替铂基催化剂成为目前的研究热点.我们最近发现将纯的三羟甲基氨基甲烷置于管式炉中在800°C下真空烧制2 h,可以简单快捷地得到一种含 N量为4.11%的纳米碳块(标记为 NCNBs-800),该材料可用于催化电化学氧气还原反应.同样情况下在700和900°C下合成的材料标记为 NCNBs-700和 NCNBs-900.采用傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、X射线衍射(XRD)和电化学旋转圆盘方法与技术对催化剂的成分、形貌和电催化性能进行了表征. SEM表明 NCNBs-800为直径为60 nm的碳块,用 FTIR手段表征了 NCNBs-800的结构变化,三羟甲基氨基甲烷中的–OH和–NH2在高温下发生消去反应,形成了饱和度不同的 C–N键和 C–C键.这些饱和度不同的 N原子和 C原子增加了材料的缺陷结构和活性位点,进一步促进了氧还原反应的催化性能.采用 XPS分析了 NCNBs-800表面的元素,通过对 N 1s进行分峰拟合,发现 NCNBs-800含有能促进氧还原性能的吡啶-N和吡咯-N,特别是吡啶-N,它吸电子的能力很强,从而导致与它邻近的 C原子表面具有一定的正电荷,这些正电荷促进了氧气的吸附和还原,为氧气还原反应提供活性位点,促进氧气还原反应的发生. XRD结果表明,三羟甲基氨基甲烷热解前后的 XRD谱图有明显变化,热解后的三羟甲基氨基甲烷呈现两个宽峰,代表着杂化碳的存在. NCNBs-800的衍射峰强度比 NCNBs-700以及 NCNBs-900大,但是宽度则比 NCNBs-700以及 NCNBs-900小,这表明800°C有利于材料的石墨烯化及碳化过程.电化学阻抗可以表明修饰电极的表面性质,阻抗图中高频处半圆的直径大小代表电子转移阻力,低频处的线性部分代表扩散过程.阻抗数据表明, NCNBs-800的电荷转移电阻可与 Pt/C催化剂相比,但是比裸露的玻碳电极小.这表明 NCNBs-800有较好的导电性和电化学性质. CV曲线表明 NCNBs-800氧还原的起始电位是-0.05 V (vs Ag/AgCl),氧气的还原电位是0.20 V (vs Ag/AgCl),说明 NCNBs-800具有良好的电化学催化性能.旋转环盘电极仪测得的氧还原极化曲线表明,在-0.3 to-0.8 V下的 NCNBs-800氧还原的电子转移数为3.4,过氧化氢产率为52%-35%,表明 NCNBs-800呈现一个提高的四电子过程.稳定性对于燃料电池氧气还原反应也是一个十分重要的性能,通过计时电流技术在电压为-0.2 V下对 NCNBs-800与 Pt/C进行了稳定性测试.结果表明,在2500 s之后 NCNBs-800相对于它的最初催化活性损失为17.56%,而 Pt/C损失了30.71%,从而说明 NCNBs-800的稳定性优于 Pt/C.总之,我们通过一步热解的简易技术制备了一种氮掺杂纳米碳材料,该碳材料具有廉价、高效和容易制备等特点,具有良好的电化学催化性能,有望在燃料电池氧化还原反应中得到大规模应用.","authors":[{"authorName":"张亭亭","id":"3a4365ff-6b15-4d99-8b60-cfbcdc8075bf","originalAuthorName":"张亭亭"},{"authorName":"何传生","id":"e2eb4293-d48d-4a6a-b122-ae86a082c244","originalAuthorName":"何传生"},{"authorName":"黎琳波","id":"bd978e78-f218-4ace-9f53-f4b55f2d1ce3","originalAuthorName":"黎琳波"},{"authorName":"林雨青","id":"638bf134-44e8-4ed0-8ebb-5810843986c5","originalAuthorName":"林雨青"}],"doi":"10.1016/S1872-2067(15)61123-8","fpage":"1275","id":"9e3b1856-4df7-4d91-8cd7-29a4c8698251","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"ea1a08ea-d1e1-47d6-9cf1-948adc1c4f59","keyword":"氮掺杂纳米碳块","originalKeyword":"氮掺杂纳米碳块"},{"id":"875cc1f8-53f1-4fb7-ba16-4cab3576128e","keyword":"三羟甲基氨基甲烷","originalKeyword":"三羟甲基氨基甲烷"},{"id":"18c470d4-dc02-4d51-bce0-c5acff6eec78","keyword":"电化学催化剂","originalKeyword":"电化学催化剂"},{"id":"c998b839-c0d6-43fc-8c5f-78e8ac18df94","keyword":"氧气还原反应","originalKeyword":"氧气还原反应"},{"id":"62d3c879-3c54-4093-96f2-6f10fe520967","keyword":"纳米催化剂","originalKeyword":"纳米催化剂"}],"language":"zh","publisherId":"cuihuaxb201608012","title":"氮掺杂纳米碳块的制备及氧还原的高电化学催化活性","volume":"37","year":"2016"},{"abstractinfo":"研究了酞菁钴(CoPc)作为电化学催化剂,对MH/Ni电池性能的影响.实验结果表明,采用合适的添加方式,酞菁钴能够明显降低电池的内压升高速度,大幅度提高电池的充放电效率以及耐过充能力,抑制合金的氧化腐蚀.添加酞菁钴的MH/Ni电池在容量衰减、内压、大电流放电等方面的性能均有显著提高.","authors":[{"authorName":"王芳","id":"5c66be89-0edd-4821-b6f4-de33dff74d9b","originalAuthorName":"王芳"},{"authorName":"吴锋","id":"1cbedddc-144b-4db8-8e9b-67dcccd3970c","originalAuthorName":"吴锋"},{"authorName":"王敬","id":"2c533108-383b-4a38-95dc-36f02bc28459","originalAuthorName":"王敬"},{"authorName":"陈实","id":"a681a972-69cb-4c20-9017-67e17ed539a5","originalAuthorName":"陈实"},{"authorName":"王国庆","id":"cbff8c32-3158-4b86-86ac-47c477c5c597","originalAuthorName":"王国庆"}],"doi":"","fpage":"606","id":"cf42a6c5-9115-48ef-88ff-0b1ec10d0688","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"686050b3-c02b-4113-b387-dae39b18af8d","keyword":"MH/Ni电池","originalKeyword":"MH/Ni电池"},{"id":"601249b9-3e68-46f3-99e8-d44319295be1","keyword":"酞菁钴","originalKeyword":"酞菁钴"},{"id":"9ad68726-1aee-444a-98c7-1a82c728c881","keyword":"电化学催化剂","originalKeyword":"电化学催化剂"},{"id":"8592dd1d-0ca9-49a0-b85e-c6c6ed295862","keyword":"内压","originalKeyword":"内压"}],"language":"zh","publisherId":"gncl200405026","title":"酞菁钴对MH/Ni电池性能的影响","volume":"35","year":"2004"},{"abstractinfo":"研究了催化剂浆液分散时间和分散剂等制备条件对Pt/C催化剂电化学活性的影响.结果表明,催化剂浆液的超声振荡时间和分散剂对Pt/C催化剂性能影响很大.当超声分散10 min时,对应的电化学性能最好;低于10 min时,催化剂的分散不够完全,性能较差;超声分散时间过长,则由于浆液温度升高使得样品颗粒团聚长大,导致Pt/C电化学催化能下降.在所考察的分散剂中,以乙醇分散制得的催化剂浆液对应的Pt/C电化学面积较大,其相应的氧还原反应活性较高.这可能是由于乙醉的极性和粘度系数小,以及超声过程中浆液温度较低等共同作用所致.","authors":[{"authorName":"王毅","id":"ac243675-ae1d-43c5-94b3-8e568f4cdf0b","originalAuthorName":"王毅"},{"authorName":"曾湘安","id":"282e5940-3b79-4ac7-85ac-6846d4dcc61b","originalAuthorName":"曾湘安"},{"authorName":"刘鸿","id":"0aadf2ac-b715-438b-ba2f-10870dd57ad9","originalAuthorName":"刘鸿"},{"authorName":"宋树芹","id":"5e687c11-ef6f-43c1-85ac-8a899555ecf2","originalAuthorName":"宋树芹"}],"doi":"10.3724/SP.J.1088.2011.00736","fpage":"184","id":"380ecc48-944c-44b5-bf1c-4465ca8987a0","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"1d04d398-f55b-4cc7-bcab-d5de5e5cb56b","keyword":"铂","originalKeyword":"铂"},{"id":"55e8b220-6f49-46c8-99f8-a0d90f2ae0c3","keyword":"炭负载型催化剂","originalKeyword":"炭负载型催化剂"},{"id":"21edd48c-620c-4c65-83c6-176aac57aeee","keyword":"超声分散","originalKeyword":"超声分散"},{"id":"d003821a-06ac-4c8d-8b98-345ebdca0e10","keyword":"分散剂","originalKeyword":"分散剂"},{"id":"333f0279-67a8-447a-a55d-de17fea77160","keyword":"电催化活性","originalKeyword":"电催化活性"},{"id":"804e6a3c-add6-4bf4-83f7-09724c451f28","keyword":"氧还原反应","originalKeyword":"氧还原反应"}],"language":"zh","publisherId":"cuihuaxb201101030","title":"催化剂浆液制备条件对Pt/C催化剂电化学性能的影响","volume":"32","year":"2011"},{"abstractinfo":"燃料电池可以在接近室温条件下将氢或烃类中蕴含的巨大化学能通过电化学途径直接转化为清洁、稳定、可持续的电能,因而被视为极有前景的、能够满足日益增长的世界能源需求的终极解决方案之一.在一个典型的氢燃料电池中,氢在正极氧化而氧在负极还原,从动力学角度说,氧还原反应(ORR)比氢氧化反应进行的慢得多.无论是在酸性还是碱性条件下,氧的还原都可以一个四电子过程或是两个双电子过程进行,当然在酸性和碱性环境中反应的机理不同.铂一直是最有效的ORR催化剂,但受到价格昂贵、稳定性差和易中毒等因素的制约,目前非铂催化剂成为越来越引人瞩目的发展方向.本综述试图从分子催化剂、金属纳米材料催化剂、金属氧化物催化剂和新兴的二维材料催化剂等方面,选取近十年来最能代表ORR电化学催化剂方面成就的例子分析其优缺点,并为今后该领域的研究提供一些有益的思路.典型的分子催化剂是卟啉类化合物,当这种四齿的N4配体与过渡金属特别是铁、钴络合时,往往显示出良好的ORR催化性能,多数情况下其中的过渡金属中心、配体和碳支撑体系共同组成催化剂的活性中心.在另一些报道中,邻菲罗啉或是连吡啶型N2化合物也可以作为配体使用.第四和第五副族的很多金属形成的不同价态的氧化物都具有氧还原活性,比如MnOx,CoOx,TiOx,ZrOx,IrOx等.金属氧化物表现出易于修饰,不容易团聚和抗腐蚀等诸多优点,而其良好的ORR性能与表面的缺陷密切相关,因此钙钛矿型氧化物ABOx也引起人们的广泛关注,人们可以通过调节氧化物的晶型、尺寸和组成来获得更好的催化性能.近年来随着液相合成技术的发展,人们可以制备出理想形状和尺寸的单分散纳米粒子,然后通过旋涂、自组装等手段将其修饰到合适的电极上以获得增强性能的ORR催化剂.通过形状与尺寸调控,或组合成其它复杂的纳米结构,都有可能提高催化活性或是稳定性,因此有关纳米催化剂的研究日趋增多.在此基础上,考虑到石墨烯的可修饰性和良好的电化学性能,纳米材料复合石墨烯所形成的二维或三维结构也可提供很好的氧还原催化性能,而MoS2代替石墨烯作为支撑物所构成的二维催化剂也是值得注意的研究方向.综上所述,尽管现有的非铂催化剂仍难以完全满足商业化的要求,设计理念和合成方法的快速发展有望在不远的将来解决这一难题.而设计合成可控尺寸、形状、组成和表面形貌的纳米催化剂在很大程度上将加速这一进程.","authors":[{"authorName":"孔建飞","id":"fd6582d5-e1f1-438f-b1fd-df02c39880ee","originalAuthorName":"孔建飞"},{"authorName":"程文龙","id":"b8298995-ebb3-4cc7-a7a7-68fc9966ee48","originalAuthorName":"程文龙"}],"doi":"10.1016/S1872-2067(17)62801-8","fpage":"951","id":"e3adbd3a-37c2-4dfa-90ca-4334886e4ec4","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"f607ab77-40be-4330-b51f-8f24cd12432e","keyword":"氧还原反应","originalKeyword":"氧还原反应"},{"id":"db2d2c08-b70d-4a48-a93f-6d1fd37719d0","keyword":"电催化剂","originalKeyword":"电催化剂"},{"id":"a02215ea-4fde-4628-beb2-dbf233743477","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"55618023-24a3-4e26-b97d-6ac5b7f66659","keyword":"分子电催化剂","originalKeyword":"分子电催化剂"},{"id":"21694776-d3c7-43a9-90b1-ae4172db34d0","keyword":"二维材料","originalKeyword":"二维材料"}],"language":"zh","publisherId":"cuihuaxb201706002","title":"氧还原电化学催化剂研究的最新进展","volume":"38","year":"2017"},{"abstractinfo":"用交替微波加热法快速制备纳米CeO2/C复合材料,进而制备Pd-CeO2/C催化剂.首次用循环伏安和计时电位法研究了碱性溶液中乙二醇在该催化剂上的电化学氧化行为.实验结果表明,Pd-CeO2/C催化剂对乙二醇的电化学氧化比单纯的Pr/C催化剂具有更好的催化活性.稳态恒电流极化实验结果证明,Pd-CeO2/C催化剂对醇氧化产生的中间物有较好的抗毒化能力.","authors":[{"authorName":"徐常威","id":"1d164478-93fd-4b19-a50b-0ec3ebb1417f","originalAuthorName":"徐常威"},{"authorName":"沈培康","id":"d7fd9349-ab05-44e6-af4a-cf98ade0250c","originalAuthorName":"沈培康"}],"doi":"","fpage":"1798","id":"b84d840c-869a-477d-bf92-5e6df5fb263c","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6b49c3ac-ddcf-4eda-b5fe-10cd4cc86066","keyword":"微波加热法","originalKeyword":"微波加热法"},{"id":"8e5ddf05-6392-4b60-a1ab-fbec5f7c9add","keyword":"乙二醇","originalKeyword":"乙二醇"},{"id":"c9ca0130-9843-4eb0-8441-c226a2a8cf32","keyword":"燃料电池","originalKeyword":"燃料电池"},{"id":"97c98f07-6f91-4ec3-8a7b-449640def1f9","keyword":"CeO2","originalKeyword":"CeO2"}],"language":"zh","publisherId":"gncl2004z1501","title":"乙二醇在Pd-CeO2/C催化剂上的电化学氧化","volume":"35","year":"2004"},{"abstractinfo":"采用柠檬酸络合法制备出六方晶系结构的 LaNiO3和正交晶系结构的 La2 NiO42种催化剂前驱体,运用化学气相沉积法制得2种碳纳米管(CNT)。运用 XRD 对2种催化剂及其前驱体晶体进行结构分析,运用TEM、孔隙比表面分析仪对2种CNT进行形貌和结构的表征,并将2种CNT分别组装成电化学超级电容器,进行了电化学储能性能测试。研究结果表明,在制备工艺和条件一致的情况下,LaNiO3与 La2 NiO4在高温下分别还原为具有不同晶面含量的2种金属Ni纳米颗粒催化剂,通过该催化剂都可制备得到 CNT,但所得 CNT 的产率、形貌、孔结构参数以及电化学储能性能都存在较大差异。通过分析得出这样的结论,CNT 的产率、形貌和孔结构参数与催化剂有直接的关系,而CNT的形貌和孔结构参数又与其电化学储能性能有直接的关系。","authors":[{"authorName":"蒋雪","id":"7079541d-bf41-4754-8062-bde803b8ccb5","originalAuthorName":"蒋雪"},{"authorName":"江奇","id":"f9e366eb-21e6-4f1f-9120-8f96970c0d35","originalAuthorName":"江奇"},{"authorName":"陈建康","id":"2fe4c2b3-a974-42a1-a080-8e97b6cdb881","originalAuthorName":"陈建康"},{"authorName":"陈姿","id":"c93cd452-64d9-42d4-ad71-6e2ff87b2c04","originalAuthorName":"陈姿"},{"authorName":"邓敏","id":"9798d017-90f5-4d8b-9218-be6402579c5a","originalAuthorName":"邓敏"},{"authorName":"蔡玉东","id":"f847061e-021e-42e2-bdc0-58c993efba69","originalAuthorName":"蔡玉东"},{"authorName":"卢晓英","id":"487f5947-b324-4756-8566-c32f3b42559f","originalAuthorName":"卢晓英"}],"doi":"10.3969/j.issn.1001-9731.2016.09.013","fpage":"9068","id":"6ff45b82-9fbf-4a97-80f2-2f25a91b1933","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ca58e68c-39d1-494d-82a2-a997000693df","keyword":"催化剂前驱体","originalKeyword":"催化剂前驱体"},{"id":"ceef9bd0-67f7-424b-a103-ff41a3f7561a","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"c6e5d67e-dee5-4a2c-a08f-d0d2e2ebfa83","keyword":"电化学超级电容器","originalKeyword":"电化学超级电容器"}],"language":"zh","publisherId":"gncl201609013","title":"催化剂对碳纳米管及其电化学储能性能的影响?","volume":"47","year":"2016"},{"abstractinfo":"采用循环伏安扫描测试对不同浓度的甲酸在纳米Au颗粒((10.0±1.2) nm)承载Pt电催化剂(记为Ptm^Au,其中m为Pt/Au原子比)上的电化学氧化过程进行了研究.结果表明,Pt在纳米Au颗粒表面的形态对甲酸的电化学氧化行为影响显著.当Pt对Au颗粒形成壳层覆盖(m>0.2)时,甲酸电氧化反应主要发生在高电势(相对SCE电极为0.6~1.0 V)范围,与常规Pt/C电催化剂上甲酸的电氧化行为类似;当Au表面Pt的形态由单原子壳层(m=0.2)递变为不大于1.0 nm的Pt原子簇或原子筏(m<0.2)时,在低电势 (-0.2~0.6 V)范围也能明显检测到甲酸的电氧化反应,而且随着m的减小,Pt的质量比活性显著提高.Pt呈现100%暴露(电化学活性面积EAS=236 m2/g-Pt)的Pt0.05^Au/C电催化剂在甲酸电氧化峰(0.38 V)处的质量比活性是通常Pt/C电催化剂(Pt分散度为30%或EAS为74 m2/g-Pt)的40倍,表明随着Au颗粒上Pt尺寸的减小或分散度的提高,Ptm^Au/C电催化剂对甲酸电氧化反应的催化活性也显著提高.在甲酸浓度由0.2 mol/L渐提高至3.2 mol/L时,Ptm^Au/C和Pt/C催化剂上甲酸电氧化反应的比电流均呈先增大后减小的火山形变化,表明适宜的甲酸工作浓度也是在Pt基催化剂上实现高功率直接甲酸燃料电池的关键因素之一.","authors":[{"authorName":"汪远昊","id":"39742492-7faa-481a-8168-1fadca7cd430","originalAuthorName":"汪远昊"},{"authorName":"赵丹","id":"67b0c36e-6217-493d-b141-49200f5efcff","originalAuthorName":"赵丹"},{"authorName":"徐柏庆","id":"c4339b5e-d29c-4e2f-b229-cd60d7e911d2","originalAuthorName":"徐柏庆"}],"doi":"","fpage":"297","id":"b7149757-d675-4a9f-a017-fe1c4a481f26","issue":"3","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"fb53009d-2a18-48e1-ab71-8ce4121078f6","keyword":"电催化","originalKeyword":"电催化"},{"id":"337c1b9d-ef1e-433f-a654-1111bb204d3b","keyword":"燃料电池","originalKeyword":"燃料电池"},{"id":"7d6cdf83-2d20-4f8a-b186-933bf1e9e018","keyword":"甲酸","originalKeyword":"甲酸"},{"id":"c971d1ae-c711-46d4-ae27-0bd95c3419af","keyword":"纳米结构铂催化剂","originalKeyword":"纳米结构铂催化剂"},{"id":"6e699486-f4c6-4429-9621-d261706fe083","keyword":"金纳米颗粒","originalKeyword":"金纳米颗粒"}],"language":"zh","publisherId":"cuihuaxb200803020","title":"甲酸在纳米金承载铂(Pt^Au)电催化剂上的电化学氧化","volume":"29","year":"2008"},{"abstractinfo":"采用单辊旋淬方法制备了成分和结构均匀的铂钛铜合金条带,通过脱合金方法进行选择性腐蚀得到了具有三维双连续孔洞结构的纳米多孔铂钛铜(np-PtTiCu)催化剂.将np PtTiCu作为三电极测试体系中的工作电极,利用循环伏安法表征了其对甲酸、乙醇和甲醇的电催化氧化性能以及抗CO中毒能力,利用恒电位极化方法表征了其电催化稳定性.结果表明,np-PtTiCu催化剂比Pt/C催化剂具有更高的电催化活性,更好的抗CO中毒能力和稳定性,这些性能的改善与电极材料的多孔结构有关.","authors":[{"authorName":"赵圆圆","id":"77f5f6c1-0a4b-445a-a63f-c35064eead2e","originalAuthorName":"赵圆圆"},{"authorName":"印会鸣","id":"ddf320da-342c-4aaa-95a8-6e761f0cb772","originalAuthorName":"印会鸣"},{"authorName":"何美凤","id":"4c18eb75-a1ea-4321-8eb4-9b33033cbc59","originalAuthorName":"何美凤"},{"authorName":"周凯","id":"516ad315-9a4a-4664-a13e-2e4ebd488adf","originalAuthorName":"周凯"},{"authorName":"潘登","id":"a46114c6-34ba-46c9-98c8-dd1602911a19","originalAuthorName":"潘登"}],"doi":"10.3969/j.issn.1001-9731.2017.04.010","fpage":"4066","id":"8da9f417-6ace-498f-9886-ff4105602f6f","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e128da6f-9e89-44d3-ac42-3a2fa0d73b4f","keyword":"脱合金","originalKeyword":"脱合金"},{"id":"0051f3d6-5f08-491c-a88b-8d9d17e49b9f","keyword":"电催化剂","originalKeyword":"电催化剂"},{"id":"94514e51-4e3d-4e59-b144-076315a2ff74","keyword":"电催化氧化","originalKeyword":"电催化氧化"},{"id":"e553b6cc-d70c-473c-94bb-6994eb68a133","keyword":"纳米多孔","originalKeyword":"纳米多孔"}],"language":"zh","publisherId":"gncl201704010","title":"纳米多孔PtTiCu催化剂的制备及其电化学性能的研究","volume":"48","year":"2017"},{"abstractinfo":"本文采用\"一锅法\"将氧化石墨烯(GO)、炭黑(C)和钯离子用NaBH4共还原,制备了石墨烯-炭黑二元载体(Gr-C)负载的钯催化剂(20%Pd/Gr-C),用于催化甲酸的电氧化反应.电化学测试结果表明,前驱体GO和C的质量比为3:7的Pd/Gr0.3C0.7催化剂催化活性最好,它的峰电流密度(102.14 mA mgPd-1)约为Pd/C催化剂(34.40 mA mgPd-1)的3倍,为钯/石墨烯催化剂(Pd/Gr,38.50 mA mgPd-1)的2.6倍.甲酸在Pd/Gr0.3C0.7催化剂电极直接氧化时的峰电位比Pd/C催化剂的峰电位负移约120 mV,比Pd/Gr催化剂的峰电位负移约70 mV.采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱、电感耦合等离子发射光谱(ICP-AES)等手段对催化剂进行了表征.从SEM图像可以观察到,球形的炭黑团簇聚集在具有褶皱的石墨烯面上,形成了炭黑团簇/石墨烯三维立体结构,有效地抑制了相邻石墨烯层在范德华力作用下的吸引聚集和堆叠造成的石墨烯表面积减小,减小了单层石墨烯叠合成为多层石墨所造成的导电性损失,避免了相邻石墨烯片叠合形成封闭空间,有助于反应物和产物分子的运动.载体的三维结构使反应物分子更容易到达钯纳米粒子,有利于催化性能的提高.XPS结果也证实了二元Gr-C载体对Pd催化的促进作用.Pd/Gr0.3C0.7催化剂的Pd 3d5/2峰发生了右移,表明Pd 3d电子结合能正移,Pd 3d电子云密度降低.具有较低的3d电子云密度的Pd不易与甲酸氧化过程中吸附的中间体(COOH)ads结合,钯催化剂上(COOH)ads表面覆盖率降低,从而使甲酸更容易直接脱氢氧化生成CO2,有利于甲酸通过直接途径进行电化学氧化.与Pd/C,Pd/Gr相比,Pd/Gr0.3C0.7催化剂对甲酸电氧化有最好的催化活性.Pd/Gr0.3C0.7催化剂优异的催化活性可归因于其内在的三维纳米结构:炭黑团簇有效地抑制了石墨烯纳米片的聚集,保持了其大的比表面积和高导电性,促进了反应物和产物分子的运动.此外,Pd纳米粒子与二元载体之间的强相互作用降低了Pd的3d电子云密度,使甲酸氧化主要经直接途径进行.本文证实了钯金属和石墨烯-炭黑二元载体之间的强相互作用,提供了简单和高性价比的方法以提高钯基催化剂的活性,有利于工业化的应用.","authors":[{"authorName":"吕美英","id":"cb3700c6-da7c-48d2-a0f7-31b7ff8fe475","originalAuthorName":"吕美英"},{"authorName":"李文鹏","id":"a339b94d-c520-4c39-be98-2eecfca84e76","originalAuthorName":"李文鹏"},{"authorName":"刘慧玲","id":"0f42e0f6-4363-43af-b682-453eacf10ac6","originalAuthorName":"刘慧玲"},{"authorName":"温文娟","id":"9dba6fde-1c7b-4166-b202-c650472a4719","originalAuthorName":"温文娟"},{"authorName":"董广","id":"2fc6285a-e69a-4e3f-ad25-2ff7ee428498","originalAuthorName":"董广"},{"authorName":"刘菁桦","id":"8e4698d2-a67d-483b-a470-54451ab9e914","originalAuthorName":"刘菁桦"},{"authorName":"彭凯臣","id":"498e9dd1-9148-4203-9b07-1a85991415b1","originalAuthorName":"彭凯臣"}],"doi":"10.1016/S1872-2067(17)62834-1","fpage":"939","id":"5cc865a9-3c03-4754-9fd7-0a8e32af51a4","issue":"5","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"8058897e-4d16-47d2-86cf-df09ee964855","keyword":"二元碳载体","originalKeyword":"二元碳载体"},{"id":"7183913a-6252-4e4a-b638-9b5ae261fe05","keyword":"钯","originalKeyword":"钯"},{"id":"b3647914-d1f5-4fcd-ad64-fe28fb5f5591","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"67948f04-dac7-456c-bee6-943ea042bb7b","keyword":"炭黑","originalKeyword":"炭黑"},{"id":"f6d47ba1-04fa-4609-81ec-ee0872eb0973","keyword":"甲酸氧化","originalKeyword":"甲酸氧化"},{"id":"c662b64a-162a-4cab-afb5-3d3fd5c0fd92","keyword":"燃料电池","originalKeyword":"燃料电池"}],"language":"zh","publisherId":"cuihuaxb201705019","title":"利用石墨烯-炭黑组成的二元碳载体增强甲酸在钯催化剂电化学氧化的活性","volume":"38","year":"2017"}],"totalpage":5853,"totalrecord":58529}