机械工程材料, 2017, 41(1): 51-55.
10.11973/jxgccl201701011
利用JD-1型轮轨模拟试验机研究了在扭矩作用下转轴表面的微动损伤,通过改变垂向载荷大小,研究了垂向载荷对转轴与轴承内圈过盈配合面微动损伤特性的影响,并借助激光共聚焦扫描电镜和扫描电子显微镜观察了损伤表面的磨痕和剖面的显微组织,分析了两种垂向载荷下转轴表面的微动损伤机理。结果表明:在垂向载荷作用下,转轴与左右两端轴承内圈过盈配合面处出现了微动损伤,磨损形式主要表现为黏着磨损和磨粒磨损;在垂向载荷较大的工况下,转轴配合面的表面磨损加剧,塑性变形层变厚,微动损伤变得更严重,并且左端配合面的磨损和塑性变形均比右端的严重,塑性变形层的厚度分布更加不均。
参考文献:
[1] C.E. Truman;J.D. Booker.Analysis of a shrink-fit failure on a gear hub/shaft assembly[J].Engineering failure analysis,20074(4):557-572.
[2] 贾国海;龚金科;鄂加强;蔡皓;王曙辉;余明果.齿轮轴过盈配合对轴肩微动磨损的影响研究[J].湖南大学学报(自然科学版),2013(5):31-36.
[3] 张远彬;鲁连涛;张继旺;邬平波;马纪军;王贵国.压装轴微动疲劳主裂纹萌生位置的分析[J].机械工程学报,2013(10):90-96.
[4] 刘兵;何国球;蒋小松;朱旻昊.轮轴钢LZ50的单轴微动疲劳失效机理[J].同济大学学报(自然科学版),2010(5):720-724.
[5] R. Gutkin;B. Alfredsson.Growth of fretting fatigue cracks in a shrink-fitted joint subjected to rotating bending[J].Engineering failure analysis,20085(5):582-596.
[6] Teuvo Juuma.Torsional fretting fatigue strength of a shrink-fitted shaft[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,19992(2):310-318.
[7] Masanobu KUBOTA;Sotaro NIHO;Chu SAKAE;Yoshiyuki KONDO.Effect of Understress on Fretting Fatigue Crack Initiation of Press-Fitted Axle[J].JSME International Journal, Series A. Solid mechanics and material engineering,20033(3):297-302.
[8] 机车电机转轴及小齿轮轴断裂失效分析[J].机械工程材料,2011(6):93-97.
[9] Q. Y. Liu;B. Zhang;Z. R. Zhou.An experimental study of rail corrugation[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20037/12(7/12):1121-1126.
[10] 花银群;陈瑞芳;杨继昌;张永康;李长生;路淼.激光淬火和冲击复合强化处理40Cr钢的耐磨性能研究[J].摩擦学学报,2003(5):448-450.
[11] 熊嘉阳;金学松.铁路曲线钢轨初始波磨演化分析[J].机械工程学报,2006(6):60-66.