{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了油溶性单体苯乙烯分别与水溶性功能单体(甲基丙烯酸,丙烯酸)的共聚过程.通过透射电镜以及红外测试等对聚合过程进行了跟踪研究.结果表明,甲基丙烯酸和丙烯酸亲水性的差异导致它们与苯乙烯的共聚过程不同.","authors":[{"authorName":"","id":"ae1393d9-4ca3-4f4a-a721-05dd4a55dd0f","originalAuthorName":"汪倩文"},{"authorName":"王平华","id":"b70c52a0-27b7-431b-8f2d-aa65485b0a39","originalAuthorName":"王平华"},{"authorName":"刘义","id":"532dc28d-a859-4bfb-a889-2003ffe8a3e5","originalAuthorName":"刘义"}],"doi":"10.3969/j.issn.0253-4312.2003.05.006","fpage":"16","id":"4a18ac80-dea4-4d25-8c6d-ce4c13334d65","issue":"5","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"22b7a1e0-d13c-4445-adac-60fb3004ca14","keyword":"无皂乳液","originalKeyword":"无皂乳液"},{"id":"25c5a105-2055-4f96-ba8a-1ce353829473","keyword":"共聚","originalKeyword":"共聚"},{"id":"0e74e7c5-b70b-4809-b051-b82f135ae3a2","keyword":"透射电镜","originalKeyword":"透射电镜"},{"id":"24468555-0a75-421d-86e1-e4eeac6cffe2","keyword":"红外测试","originalKeyword":"红外测试"}],"language":"zh","publisherId":"tlgy200305006","title":"苯乙烯与甲基丙烯酸及丙烯酸无皂乳液共聚过程研究","volume":"33","year":"2003"},{"abstractinfo":"采用XRD、XPS和EPMA对中原油田23-1、23-8气井油管腐蚀产物和管材进行分析,并试验了碳钢在CO_2介质中的腐蚀。研究结果表明,天然气中的CO_2及凝析水是气井腐蚀的主要原因。管材的非金属夹杂物(MnS、Al_2O_3)含量超标,是加速油管在CO_2环境中局部腐蚀穿孔破坏的另一原因。还探索了应用缓蚀剂防止气井CO_2腐蚀的可能性。","authors":[{"authorName":"郑家燊","id":"4aa259a3-9890-4b94-9b92-98f14b4e4f42","originalAuthorName":"郑家燊"},{"authorName":"傅朝阳","id":"a1cacedc-6258-4398-b16d-88cd84d16bb2","originalAuthorName":"傅朝阳"},{"authorName":"刘小武","id":"bf9d6195-ac31-4120-af98-9fe37c032278","originalAuthorName":"刘小武"},{"authorName":"彭芳明","id":"b12594db-16cd-4fed-acee-6a3b80c2e3e0","originalAuthorName":"彭芳明"},{"authorName":"黄先球","id":"81f57758-cf1b-4278-85f5-8487745c85f5","originalAuthorName":"黄先球"},{"authorName":"赵景茂","id":"2585fd88-4683-4422-a42d-a7e16622f802","originalAuthorName":"赵景茂"},{"authorName":"吴灿奇","id":"f5df895d-4271-4238-9ffd-b90f59bcfea3","originalAuthorName":"吴灿奇"},{"authorName":"徐卫东","id":"d818fdc7-f940-4272-876f-da920464a5be","originalAuthorName":"徐卫东"},{"authorName":"王选奎","id":"0e7fcc50-e2ce-4b16-b99e-966d1599adb8","originalAuthorName":"王选奎"}],"categoryName":"|","doi":"","fpage":"227","id":"0d85a2b4-88c6-4d26-9da8-44ae165c2bb0","issue":"3","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"e9abd684-3d59-4d32-afed-0dc9a6ebb526","keyword":"气井","originalKeyword":"气井"},{"id":"419b9942-a4fd-4ee8-a6d7-8dc4eefbc226","keyword":" Oil pipe corrosion","originalKeyword":" Oil pipe corrosion"},{"id":"feeaf218-889a-414d-b05a-0280637a071b","keyword":" Failure analysis","originalKeyword":" Failure analysis"},{"id":"fa46cf1b-a087-49db-976c-f2d91ed2912a","keyword":" Inhibitor","originalKeyword":" Inhibitor"}],"language":"zh","publisherId":"1005-4537_1998_3_5","title":"中原油田23气田气井腐蚀原因分析","volume":"18","year":"1998"},{"abstractinfo":"以拉法辛为原料,分别以新的脱甲基试剂半胱氨酸钠盐和青霉胺钠盐制备了O-去甲基拉法辛,收率为86%和82%.一锅中分别完成了半胱氨酸钠盐、青霉胺钠盐的制备与拉法辛脱甲基反应,简化了操作步骤.最优反应条件为溶剂N-甲基吡咯烷酮,反应温度175℃,产物析晶pH值9.5.","authors":[{"authorName":"史兰香","id":"7597e205-02a8-4085-8343-0c2ab51f36d3","originalAuthorName":"史兰香"},{"authorName":"张宝华","id":"7ba9bf25-7bfc-4318-8efb-de8c0b997697","originalAuthorName":"张宝华"}],"doi":"10.3724/SP.J.1095.2013.20351","fpage":"608","id":"1c34983e-fdfa-4f09-8d73-f19f35b652d1","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"e00801ae-0af6-4f60-8558-f9affd1bf34b","keyword":"O-去甲基拉法辛","originalKeyword":"O-去甲基文拉法辛"},{"id":"8ca7db3f-40ec-418b-8cdf-abfa3eb3f31f","keyword":"拉法辛","originalKeyword":"文拉法辛"},{"id":"68c5308b-5920-423a-8b00-745e3794cf01","keyword":"脱甲基化","originalKeyword":"脱甲基化"},{"id":"9a3870aa-9adf-42e1-ba5c-d1ec47baacb2","keyword":"半胱氨酸钠盐","originalKeyword":"半胱氨酸钠盐"},{"id":"cc5917c0-e45e-49e1-ba0f-753dc1f71b26","keyword":"青霉胺钠盐","originalKeyword":"青霉胺钠盐"}],"language":"zh","publisherId":"yyhx201305020","title":"O-去甲基拉法辛合成的新方法","volume":"30","year":"2013"},{"abstractinfo":"对丽哈贝壳的微结构进行了扫描电镜(SEM)观察,观察显示它是由无机霰石层和有机胶原蛋白组成的一种生物陶瓷复合材料,其中无机霰石层平行于贝壳表面整齐排列.观察也显示这些霰石层是由长而薄的霰石片所组成,不同霰石层中的霰石片具有不同的方向,构成螺旋等铺层形式.更仔细的观察显示每一霰石片又是由长而细的霰石纤维所组成,最细的霰石纤维具有纳米的尺度.根据在贝壳中观察到的螺旋结构,进行了螺旋结构和平行结构最大拔出力的比较实验研究,结果显示螺旋结构的最大拔出力大于平行结构的最大拔出力,它使贝壳具有高的强韧性.研究结果对高性能仿生陶瓷复合材料设计提供了有益指导.","authors":[{"authorName":"陈斌","id":"91984828-0e77-4a93-8cfd-2a46e2d25fed","originalAuthorName":"陈斌"},{"authorName":"彭向和","id":"d5ef20d1-e4e5-4a98-ba6b-92196ea2e073","originalAuthorName":"彭向和"},{"authorName":"孙士涛","id":"75180f74-ebf9-43d4-8789-47a26820e62b","originalAuthorName":"孙士涛"},{"authorName":"季金苟","id":"40f27576-f5ed-4e6e-b90d-d14547d07392","originalAuthorName":"季金苟"},{"authorName":"陈松","id":"964db22e-7bbb-4c54-80ae-5085d2652f09","originalAuthorName":"陈松"}],"doi":"","fpage":"60","id":"3b75f394-59d0-43b2-a932-20048ca15d0a","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"27c2d5d0-a910-4ad5-877a-f290d9c33e02","keyword":"丽哈贝壳","originalKeyword":"丽文哈贝壳"},{"id":"9b386643-5818-48f6-b972-95cb3df8690a","keyword":"生物陶瓷复合材料","originalKeyword":"生物陶瓷复合材料"},{"id":"1282b5cd-aa58-48ae-816f-8792bfb44248","keyword":"螺旋微结构","originalKeyword":"螺旋微结构"},{"id":"aadcdba1-cd86-4a6e-839e-1b9c5dec2ce3","keyword":"最大拔出力","originalKeyword":"最大拔出力"}],"language":"zh","publisherId":"xyjsclygc2008z1015","title":"丽哈贝壳螺旋微结构研究","volume":"37","year":"2008"},{"abstractinfo":"本文通过对不同收缩比和收缩段形线结构下的丘里管内气固两相流的数值模拟,给出了丘里燃烧器浓淡分离效果和阻力特性与丘里管结构的关系.结果表明,丘里燃烧器的阻力损失主要发生在收缩段,并且随着收缩比的增大,燃烧器的浓淡分离效果将变差,阻力损失减小;当收缩段采用圆弧形形线结构时,可使丘里燃烧器单位压降的浓淡比增加,且在弯曲弧度相同的情况下,“内凹”弧形与“外凸”弧形燃烧器相比,其单位压降浓淡比更大;收缩段形线弯曲弧度增大,单位压降浓淡比随之增大.","authors":[{"authorName":"沈思苇","id":"5a999190-3ffb-4d80-b460-197cedc06af0","originalAuthorName":"沈思苇"},{"authorName":"杨茉","id":"97121967-3835-4991-ab13-304ee7067213","originalAuthorName":"杨茉"},{"authorName":"蒋燕华","id":"8488f542-67c3-46c1-98cf-56cebb209ac6","originalAuthorName":"蒋燕华"},{"authorName":"王治云","id":"08b55b85-7a1b-45d8-9657-16a373b016e4","originalAuthorName":"王治云"}],"doi":"","fpage":"347","id":"747fc399-8dda-4084-b7bd-cebe62212e4a","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c7de31ac-c443-4b67-99c0-974d64964d69","keyword":"丘里管","originalKeyword":"文丘里管"},{"id":"69c79a58-0279-4848-b9b6-4ac959176221","keyword":"浓淡燃烧器","originalKeyword":"浓淡燃烧器"},{"id":"04996fc7-bd5d-4c2d-bd4f-38e2cde015b7","keyword":"气固两相流","originalKeyword":"气固两相流"},{"id":"2de6fa00-619b-41d8-83b3-28e197cbec04","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201502026","title":"丘里燃烧器结构对浓淡分离影响的数值模拟","volume":"36","year":"2015"},{"abstractinfo":"根据中原油田一污水站水质分析和腐蚀监测结果,应用灰关联分析方法对中原油田一污水站腐蚀状况进行了分析,灰关联度的计算结果表明:影响中原油田一污来水腐蚀性的主要因素是∑Fe含量、pH值、Fe3+浓度、SRB(硫酸盐还原菌)含量、HCO3-浓度和TGB(腐生菌)含量;影响中原油田一污处理后水腐蚀性的主要因素是矿化度、Ca2+、Mg2+、Cl-、SO42-和Na+浓度.对中原油田一污来水、处理后水的水质与腐蚀速率的进行了比较结果表明:提高来水的pH值、控制污水中SRB及TGB含量、降低污水中∑Fe浓度,对于降低腐蚀速率意义重大;同时也进一步证明了灰关联分析结果符合实际情况.灰关联分析方法为中原油田一污水的腐蚀研究提供了新的思路和方法.\n\n","authors":[{"authorName":"屈撑囤","id":"6846d64c-8a1a-4d59-915b-e7af865bb333","originalAuthorName":"屈撑囤"},{"authorName":"卢会霞","id":"758143eb-e418-44e9-bf68-07527de46beb","originalAuthorName":"卢会霞"},{"authorName":"卜绍峰","id":"d89e6db0-9d7c-4460-a75e-5ff428abe131","originalAuthorName":"卜绍峰"}],"categoryName":"|","doi":"","fpage":"198","id":"2cb3b772-d098-4219-bdb4-ea81d83ae6f2","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"bed557cf-c9ed-4573-a221-71b69483f85e","keyword":"灰关联分析","originalKeyword":"灰关联分析"},{"id":"b67d85fa-418a-4a6f-a335-0377a53435fa","keyword":"null","originalKeyword":"null"},{"id":"1a6e0d19-e9fd-46c2-8a31-8926ec42963e","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2005_3_17","title":"灰关联分析法研究中原油田一污水的腐蚀因素","volume":"17","year":"2005"},{"abstractinfo":"根据中原油田一污水站水质分析和腐蚀监测结果,应用灰关联分析方法对中原油田一污水站腐蚀状况进行了分析,灰关联度的计算结果表明:影响中原油田一污来水腐蚀性的主要因素是∑Fe含量、pH值、Fe3+浓度、SRB(硫酸盐还原菌)含量、HCO3-浓度和TGB(腐生菌)含量;影响中原油田一污处理后水腐蚀性的主要因素是矿化度、Ca2+、Mg2+、Cl-、SO42-和Na+浓度.对中原油田一污来水、处理后水的水质与腐蚀速率的进行了比较结果表明:提高来水的pH值、控制污水中SRB及TGB含量、降低污水中∑Fe浓度,对于降低腐蚀速率意义重大;同时也进一步证明了灰关联分析结果符合实际情况.灰关联分析方法为中原油田一污水的腐蚀研究提供了新的思路和方法.","authors":[{"authorName":"屈撑囤","id":"2bb026c0-9d50-4d49-92c2-3bd084bb2967","originalAuthorName":"屈撑囤"},{"authorName":"卢会霞","id":"2045d697-0cb6-4dea-8f79-740e7fdf5d7b","originalAuthorName":"卢会霞"},{"authorName":"卜绍峰","id":"50335fa1-2d37-46c8-b40e-16e914c04660","originalAuthorName":"卜绍峰"}],"doi":"10.3969/j.issn.1002-6495.2005.03.019","fpage":"198","id":"1155dffe-6ec8-40df-bae6-2f48cf9d82db","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"57005f5a-87bc-466c-9a3e-3c8cf2b5289f","keyword":"灰关联分析","originalKeyword":"灰关联分析"},{"id":"86252176-5974-412f-b5b2-491eb3cd277b","keyword":"采油污水","originalKeyword":"采油污水"},{"id":"61ffb610-04db-441f-8242-674d9fe23330","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"fskxyfhjs200503019","title":"灰关联分析法研究中原油田一污水的腐蚀因素","volume":"17","year":"2005"},{"abstractinfo":"为提高转炉OG系统烟气除尘效率,依据湿法回收工艺除尘机理,对现代湿法除尘工艺进行了研究.针对系统烟气净化环节,着重对RD氏管以及第四代环缝氏管除尘器结构分析,指出两种氏管线性可调性还有待提高.在此基础之上,提出了一种新的重砣设计方法,结果表明改进后的流量控制结构的线性相关系得到很大提高,对转炉OG系统烟气湿法除尘具有重要意义.","authors":[{"authorName":"桂瞬丰","id":"43e2ca97-7387-44e5-9fe7-24a7df8e6655","originalAuthorName":"桂瞬丰"},{"authorName":"幸福堂","id":"46ed36b0-1d0a-4949-b761-912dbcb58e71","originalAuthorName":"幸福堂"},{"authorName":"李群燕","id":"6e3515a2-22b1-4a2a-bb3c-40b3451d923d","originalAuthorName":"李群燕"}],"doi":"10.14186/j.cnki.1671-6620.2016.02.004","fpage":"97","id":"5ad8b068-15bc-4903-ad90-659a74ea3642","issue":"2","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"e524df90-65c1-4013-b1fe-44664a2e2a60","keyword":"转炉","originalKeyword":"转炉"},{"id":"418c1d2e-3c1a-48c7-98d7-06ebe92cf6a4","keyword":"OG","originalKeyword":"OG"},{"id":"5196eb45-4738-46f1-b9be-80a49006d80e","keyword":"调径氏管","originalKeyword":"调径文氏管"},{"id":"5ff19016-3eb3-404b-8264-a55a812ea14c","keyword":"除尘","originalKeyword":"除尘"}],"language":"zh","publisherId":"clyyjxb201602004","title":"转炉OG系统调径氏管结构的优化","volume":"15","year":"2016"},{"abstractinfo":"东油田气举井由于其所处的生产环境及本身流态特点,腐蚀严重且具有其特殊规律.本文描述了气举井的腐蚀现状;分析了腐蚀影响因素;对气举井缓蚀剂性能进行了评价;介绍了腐蚀防护工艺.为相关油田(油井)腐蚀研究及防护提供了可借鉴的经验.","authors":[{"authorName":"陈普信","id":"d8702698-79fe-4533-b268-696e7cd087de","originalAuthorName":"陈普信"},{"authorName":"张连明","id":"91b8cfe0-fa27-42d2-b15f-8e29596603b0","originalAuthorName":"张连明"},{"authorName":"李荣勤","id":"64bc85c3-62bb-4dee-8520-c7bdce5c8594","originalAuthorName":"李荣勤"},{"authorName":"郑岩","id":"4a4e621e-4152-4a52-af5b-c19c2c551c38","originalAuthorName":"郑岩"},{"authorName":"王选奎","id":"ebceea63-e739-45f6-9dca-641cc5c43933","originalAuthorName":"王选奎"},{"authorName":"郭学辉","id":"bc7d003b-e359-4044-b134-d4d4a70c83e3","originalAuthorName":"郭学辉"}],"doi":"10.3969/j.issn.1005-748X.2000.03.009","fpage":"119","id":"664823f4-aa13-4702-a3fe-e31356c16cd6","issue":"3","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"c68ae78c-6424-4170-9277-bf5d4f7ff11b","keyword":"气举井","originalKeyword":"气举井"},{"id":"71c7e0bd-e5c7-400a-a72b-1ac4b77a8f74","keyword":"腐蚀研究","originalKeyword":"腐蚀研究"},{"id":"5b2e750c-2c88-4f2b-bc8b-f061d5c1db98","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"ceeec023-a889-4eec-9ce6-8602a274f376","keyword":"开发与评价","originalKeyword":"开发与评价"},{"id":"cb663b3e-aa25-482b-bdec-71cf14fafa57","keyword":"防护技术","originalKeyword":"防护技术"}],"language":"zh","publisherId":"fsyfh200003009","title":"东油田气举油井腐蚀研究与防护技术","volume":"21","year":"2000"},{"abstractinfo":"全面分析了23气田产出气和水的组分,摸清了主要腐蚀因素及规律.针对性地研究了油溶型和水溶型缓蚀剂的性能,选择效果好的缓蚀剂进行了现场试验.监测结果表明,缓蚀剂能有效地减缓气田腐蚀,缓蚀率最高达90%以上.","authors":[{"authorName":"于在宽","id":"c5caa47c-c92c-44a2-8b43-b57f0a61e8b8","originalAuthorName":"于在宽"},{"authorName":"赵先进","id":"ced8f58b-14e1-4ae9-8e19-5e394d594b7a","originalAuthorName":"赵先进"},{"authorName":"王选奎","id":"7338a7bd-8de1-47e1-b53e-188900635de5","originalAuthorName":"王选奎"},{"authorName":"薛吉明","id":"cf2f40d3-0af5-45da-bc03-33421ff2602b","originalAuthorName":"薛吉明"},{"authorName":"李敏","id":"f02155a0-823c-4791-8c14-386c0b03ad3b","originalAuthorName":"李敏"}],"doi":"10.3969/j.issn.1005-748X.2002.06.007","fpage":"263","id":"98baee40-0807-4aae-b3ce-fa2ae92f274b","issue":"6","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"a048b6ed-460c-4616-8a7b-f7435be97f75","keyword":"油田","originalKeyword":"油田"},{"id":"d7044e30-ebc7-4e48-bb79-7a0930a501f7","keyword":"腐蚀因素","originalKeyword":"腐蚀因素"},{"id":"08b7e072-fad6-4721-a9f5-ed9e419403a6","keyword":"防护技术","originalKeyword":"防护技术"}],"language":"zh","publisherId":"fsyfh200206007","title":"中原油田23气田腐蚀因素与防护技术研究","volume":"23","year":"2002"}],"totalpage":15,"totalrecord":145}