{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用聚丙二醇二苯甲酸酯(PPGDB)为内给电子体制备了一种新的丙烯聚合催化剂MgCl2/PPGDB/TiCl4. 该催化剂用于丙烯聚合时,除了具有与以邻苯二甲酸二异丁酯为给电子体的催化剂相当的活性和立体定向性外,其特点在于所得产物的分子量分布较宽(Mw/Mn>8.0). 采用红外光谱研究了催化剂中PPGDB与MgCl2的作用机制,结果表明PPGDB中的酯官能团和醚官能团可同时与MgCl2配位. 这种双官能团的配位作用是所得聚合物分子量分布较宽的主要原因.","authors":[{"authorName":"张巧风","id":"d1d1f71b-61ed-4cae-b9be-31bb690bba01","originalAuthorName":"张巧风"},{"authorName":"原宇平","id":"3257772d-a842-4d22-8966-ae0e78dddfb6","originalAuthorName":"原宇平"},{"authorName":"张春雨","id":"3940f216-2c51-4b57-8808-4834ba74d4ed","originalAuthorName":"张春雨"},{"authorName":"陈斌","id":"7fee27ed-a3af-41da-a086-79085cab6b2f","originalAuthorName":"陈斌"},{"authorName":"张学全","id":"bc1e6d0e-67ab-4d05-b72b-39a5d567b58c","originalAuthorName":"张学全"}],"doi":"","fpage":"3","id":"f526af39-ec28-4724-9998-2298276cea94","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"07d16e1b-9852-43d9-9e36-ba6e1a8a242b","keyword":"聚丙二醇二苯甲酸酯","originalKeyword":"聚丙二醇二苯甲酸酯"},{"id":"7a7e34a3-624f-457f-a4b8-213c88989e2d","keyword":"给电子体","originalKeyword":"给电子体"},{"id":"ab493fd1-61eb-458a-9fe6-4ce0838e90e9","keyword":"氯化镁","originalKeyword":"氯化镁"},{"id":"278b3ced-8bae-4044-900a-f52859c57e5a","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"ccb68a99-2cf6-42ae-87ba-d9ea4e1a66ac","keyword":"丙烯","originalKeyword":"丙烯"},{"id":"e9a62ef3-a504-49d3-bbbe-6e3a1e303425","keyword":"聚合","originalKeyword":"聚合"},{"id":"8b5ac062-d8d3-4f0a-ac02-a13bf0e69219","keyword":"宽分子量分布","originalKeyword":"宽分子量分布"}],"language":"zh","publisherId":"cuihuaxb200701002","title":"以聚丙二醇二苯甲酸酯为给电子体的丙烯聚合催化剂","volume":"28","year":"2007"},{"abstractinfo":"在对轧制时钢管的温降原因进行分析的基础上,给出一种定张减温降计算模型,该模型考虑了辐射、接触传导、内部传导对温度的影响.通过对轧制实验测定得到钢管的温降数据与此模型实例计算的结果进行对比分析,表明该模型比较准确,能够满足生产实际的要求,可用于自动控制系统中定张减温降的计算,从而为控制系统比较准确地对轧机进行设定及调整提供依据.","authors":[{"authorName":"付国忠","id":"2df6a851-8f47-4b56-8f72-ddb7bbbcfe8c","originalAuthorName":"付国忠"},{"authorName":"刘建平","id":"7bbce9ac-9a32-45eb-96fd-189eee9a7fcf","originalAuthorName":"刘建平"},{"authorName":"赵晓峰","id":"447ac541-0f77-4dc8-b74d-90d05019a5dc","originalAuthorName":"赵晓峰"},{"authorName":"刘建明","id":"dab886da-88c3-485b-acd8-36bdef7ca181","originalAuthorName":"刘建明"},{"authorName":"吕庆功","id":"ca75c975-aa2d-40d9-a1bc-e6c2a6290dd3","originalAuthorName":"吕庆功"},{"authorName":"彭龙洲","id":"191fb78f-9fa7-4ff8-bd3d-f5d577b2254b","originalAuthorName":"彭龙洲"}],"doi":"","fpage":"51","id":"f9f1b624-57cd-4daa-8c3b-87273c5da7af","issue":"12","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"86dbadc0-1405-4493-8908-e33b69ac127a","keyword":"定张减","originalKeyword":"定张减"},{"id":"9e7152eb-09a1-44ea-a2de-6bbe76d243e5","keyword":"温降","originalKeyword":"温降"},{"id":"5b41b920-ede8-4551-8e68-3e12ea48cca0","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"gt200412013","title":"定张减温降计算模型","volume":"39","year":"2004"},{"abstractinfo":"通过对高压输电用耐张线夹及夹持导线的宏观形貌、化学成分、腐蚀产物进行分析,探讨了该线夹腐蚀失效的原因.结果表明:该线夹在压接时即存在铝线断股现象,服役过程中使酸性雨水更易进入到压接管内部,对线夹与钢芯铝绞线结合面进行腐蚀生成腐蚀产物,导致耐张线夹电阻增大;随着腐蚀的进行,线夹电阻不断增大,其温度也随之升高;当温度超过临界温度时,热平衡状态被打破,最终线夹过热,导致高温烧损失效;应加强线夹压接管位置的红外测温监控,及时更换温度明显异常的压接管.","authors":[{"authorName":"王若民","id":"67613948-e11f-48e5-825a-945647e34637","originalAuthorName":"王若民"},{"authorName":"詹马骥","id":"c5bfcec7-5a00-4e3d-b8c3-cc8ae36b1c5e","originalAuthorName":"詹马骥"},{"authorName":"季坤","id":"fad04bbc-1535-4f0d-b2d0-e0a6c3cd18b9","originalAuthorName":"季坤"},{"authorName":"严波","id":"5762aad4-1316-4f1b-a398-6bef540edc39","originalAuthorName":"严波"},{"authorName":"王夫成","id":"293d7a45-367c-4e72-b1e8-54671748e326","originalAuthorName":"王夫成"},{"authorName":"杜晓东","id":"34fa50d8-c180-4b94-bef4-334bb0b32a93","originalAuthorName":"杜晓东"}],"doi":"10.11973/jxgccl201703023","fpage":"112","id":"70c96a82-1183-4792-9903-a2d3f429c779","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"ba9620cc-12e4-4c4a-8ed2-dabf99baee9b","keyword":"耐张线夹","originalKeyword":"耐张线夹"},{"id":"e9262adb-ad1f-42ae-a53f-f8cf601c190c","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"b1c65b70-8df7-4c01-b691-fbe881df0505","keyword":"热击穿","originalKeyword":"热击穿"},{"id":"08076d01-a062-4829-9d0a-13eb956fbedd","keyword":"钢芯铝绞线","originalKeyword":"钢芯铝绞线"}],"language":"zh","publisherId":"jxgccl201703024","title":"高压输电用耐张线夹失效的原因","volume":"41","year":"2017"},{"abstractinfo":"通过实例对排风井之间设置调风联络巷道的降阻节能效果进行了系统的论述.总结出了排风井之间设置调风联络巷道可获得最优节能效果的重要结论.此结论对于矿山节能和老通风系统改造具有一定的指导意义.","authors":[{"authorName":"陈喜山","id":"f8fb0c50-0032-489b-8913-2be76311e8c9","originalAuthorName":"陈喜山"},{"authorName":"郭晓芳","id":"df0f36c3-c06d-4801-bfa7-9ca043843642","originalAuthorName":"郭晓芳"},{"authorName":"梁晓春","id":"d55747aa-43c6-4db2-9308-b98d99f691b2","originalAuthorName":"梁晓春"},{"authorName":"刘志君","id":"4787e08a-936d-4257-a000-ba64f66ae178","originalAuthorName":"刘志君"},{"authorName":"刘文可","id":"0a2ed410-7bf8-49d9-83ad-c218d0752ffa","originalAuthorName":"刘文可"},{"authorName":"高成勤","id":"67b1463f-c257-4246-8b1d-ce63216cb9c7","originalAuthorName":"高成勤"}],"doi":"10.3969/j.issn.1001-1277.2004.12.007","fpage":"21","id":"b3bcdf3d-e664-4523-9d67-a2e6d4dea057","issue":"12","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"0f483575-4629-44b0-a3af-c167e719a3aa","keyword":"排风系统","originalKeyword":"排风系统"},{"id":"3a80d54c-6aa7-4d99-910c-a673c5707dc3","keyword":"调风联络巷道","originalKeyword":"调风联络巷道"},{"id":"8aea8f9b-e3ce-4e12-a651-38c107449b27","keyword":"降阻节能","originalKeyword":"降阻节能"}],"language":"zh","publisherId":"huangj200412007","title":"排风井之间设置调风联络巷道的降阻节能作用","volume":"25","year":"2004"},{"abstractinfo":"分析了宝钢1420冷轧酸轧机#机架后的测张辊在正常轧制中产生的划伤问题,通过对测张辊的表面状态、辊径、安装高度以及轴承的改进,彻底解决了因测张辊表面划伤而直接导致带钢表面划伤的产品质量问题.","authors":[{"authorName":"陈松","id":"49272655-146f-4cbc-84c1-2b2664d55eec","originalAuthorName":"陈松"},{"authorName":"符寒光","id":"e5d26514-5d18-4a3c-932a-02e08ffd7448","originalAuthorName":"符寒光"}],"doi":"10.3969/j.issn.1001-7208.2002.06.005","fpage":"20","id":"47514943-7c51-4f1e-bf3e-32d27788e620","issue":"6","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"31f17eb1-f1ce-4ccd-acfb-7f4cd9f4fa54","keyword":"酸轧机组","originalKeyword":"酸轧机组"},{"id":"684f41a3-ab59-4919-9359-c7c51e7f6b90","keyword":"测张辊","originalKeyword":"测张辊"},{"id":"73562d3f-7aac-47e8-aa62-9de0e87ad5f2","keyword":"冷轧带钢","originalKeyword":"冷轧带钢"},{"id":"c4f9713a-3335-4538-99ea-8403d4c12ebc","keyword":"表面划伤","originalKeyword":"表面划伤"}],"language":"zh","publisherId":"shjs200206005","title":"冷轧机组测张辊表面划伤的研究","volume":"24","year":"2002"},{"abstractinfo":"对断裂的汽车张紧轮紧固螺栓的显微组织、化学成分、硬度以及断口的宏、微观特征进行了综合分析,找出其断裂的原因.结果表明:螺栓在搓丝加工过程中挤压量过大,使螺纹尖端产生较多微裂纹,同时螺纹根部也存在一些加工缺陷,并在之后的热处理过程中进一步扩展;在使用过程中,微裂纹和加工缺陷处产生应力集中,使螺栓材料的疲劳强度降低,裂纹源的过早形成最终导致了螺栓发生疲劳断裂而失效.","authors":[{"authorName":"柴武倩","id":"da907f57-90f8-4c53-98bf-e3369a0b89a6","originalAuthorName":"柴武倩"},{"authorName":"杨强云","id":"a7086465-8523-42b4-9854-22ab6a3fd3f5","originalAuthorName":"杨强云"},{"authorName":"杨川","id":"8009d472-714c-4b40-be98-7d783ceea493","originalAuthorName":"杨川"},{"authorName":"高国庆","id":"7c8ab93c-3dd5-4af0-9a4f-28f1622efa78","originalAuthorName":"高国庆"},{"authorName":"崔国栋","id":"de001797-404a-4cb5-b0ed-e937bc85e3db","originalAuthorName":"崔国栋"}],"doi":"10.11973/jxgccl201509024","fpage":"103","id":"de2ae3fc-935a-4985-bed5-e3dec17b9161","issue":"9","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"fca7a64f-70c5-4cec-a74e-1e5413ce3901","keyword":"螺栓","originalKeyword":"螺栓"},{"id":"c902c41f-c6f5-41bd-8f37-8de4d8259594","keyword":"微裂纹","originalKeyword":"微裂纹"},{"id":"241ba6c4-95e4-425c-9942-023afc14ff39","keyword":"缺陷","originalKeyword":"缺陷"},{"id":"e4ae4e6c-cab5-4ae1-8863-83cbb54c0a40","keyword":"疲劳断裂","originalKeyword":"疲劳断裂"}],"language":"zh","publisherId":"jxgccl201509024","title":"汽车张紧轮紧固螺栓断裂分析","volume":"39","year":"2015"},{"abstractinfo":"综述了国内外风电产业的发展现状和生产企业的生产现状,并从结构、制造等方面对碳纤维复合材料在风电行业的应用及发展优势进行了详细的介绍.","authors":[{"authorName":"李峰","id":"40723338-9cc2-40df-9b8f-e681b1d05d4a","originalAuthorName":"李峰"}],"doi":"10.3969/j.issn.1003-1545.2011.06.019","fpage":"86","id":"4d416e32-47e5-4637-a800-86aa4fe028b7","issue":"6","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"11fe13ef-0d95-4a9b-9b71-1ee04c821bb6","keyword":"风力发电","originalKeyword":"风力发电"},{"id":"b687d462-80e1-4b7a-b61c-6512b5719bb7","keyword":"风机叶片","originalKeyword":"风机叶片"},{"id":"d2dd7927-0393-41d8-b19d-52c2cefe0b52","keyword":"碳纤维复合材料","originalKeyword":"碳纤维复合材料"},{"id":"f1f34ac7-73e0-4c55-8bbd-50827ae6b8ca","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"clkfyyy201106019","title":"风电发展现状与碳纤维材料在风电中的应用","volume":"26","year":"2011"},{"abstractinfo":"风电叶片作为风电机组捕获风能的唯一构件,其安全可靠运行是风力发电机组获得较高风能利用系数和较大经济效益的基础.由于叶片在恶劣的环境中长周期运行,叶片前缘容易出现腐蚀现象.而叶尖前缘部位比较薄且叶尖运转的线速度最大,该部位的腐蚀是整个叶片中最为严重的.叶片前缘腐蚀对机组的发电量有很大影响,随着风电机组的大型化发展,叶片前缘腐蚀成为风电领域亟待解决的问题.本文综述了风电叶片前缘腐蚀对机组性能的影响、造成叶片前缘腐蚀的主要因素、风电叶片前缘防护的技术进展,提出了未来叶片前缘防护的关注重点.","authors":[{"authorName":"卢家骐","id":"9468fc7c-a8c9-482f-a9b8-69bf5217fb7f","originalAuthorName":"卢家骐"},{"authorName":"牟书香","id":"705bb5d1-846b-4d49-8309-fdb8077f01ab","originalAuthorName":"牟书香"},{"authorName":"李权舟","id":"ca377dd1-1316-4a2f-a0fe-f19b82f1bf85","originalAuthorName":"李权舟"}],"doi":"","fpage":"91","id":"0c562b51-4017-4090-a935-0a3295f9a97b","issue":"7","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"9784a93e-4343-491e-a909-8e3576212dc0","keyword":"风电叶片","originalKeyword":"风电叶片"},{"id":"629c2e38-c046-49a4-b729-e5dd894a6342","keyword":"前缘腐蚀","originalKeyword":"前缘腐蚀"},{"id":"9e5c275f-e86f-4ab6-bdc9-e666779030e6","keyword":"前缘防护","originalKeyword":"前缘防护"},{"id":"8969326d-e1d7-4ecb-a506-cba9bc833f11","keyword":"雨蚀","originalKeyword":"雨蚀"},{"id":"22c1ac72-5635-4dee-946c-270e6e3ed8bb","keyword":"防护涂层","originalKeyword":"防护涂层"},{"id":"acc39fb0-509a-4ecb-87f7-990cf71ff8cc","keyword":"年发电量","originalKeyword":"年发电量"}],"language":"zh","publisherId":"blgfhcl201507018","title":"风电叶片前缘防护技术进展","volume":"","year":"2015"},{"abstractinfo":"多普勒测风激光雷达能够实现高时空分辨率的大气风场测量,中国海洋大学成功研制了可以测量风廓线和三维大气风场的车载多普勒测风激光雷达,并已交付中国气象局使用.为了检验该激光雷达的测量性能,2011年春季开展了车载激光雷达与探空气球风廓线同步观测实验,获取了55组比对数据.介绍了此次同步观测实验,给出了激光雷达和探空气球风廓线数据的比对个例,并对所有比对数据进行了统计分析.同步比对结果显示,激光雷达与探空气球风廓线数据的风速均方根偏差为2.76 m/s.通过分析比对偏差,证明了激光雷达风廓线测量结果的准确性.","authors":[{"authorName":"刘秉义","id":"cb3b159f-da98-46dc-8f97-18c597ca0187","originalAuthorName":"刘秉义"},{"authorName":"冯长中","id":"97b6fbd2-93e2-425f-8fb7-4bf6037f8694","originalAuthorName":"冯长中"},{"authorName":"陈玉宝","id":"80806c14-05d4-44a0-b9f4-d5dfe284d403","originalAuthorName":"陈玉宝"},{"authorName":"高玉春","id":"496db7bb-81e0-46ae-ad18-d2f9a6ca09ce","originalAuthorName":"高玉春"},{"authorName":"陈超","id":"3ab4fb91-f524-4439-ae0b-ae1a5aadedf6","originalAuthorName":"陈超"},{"authorName":"张冰","id":"81734dad-5e69-4418-8e19-03483518a318","originalAuthorName":"张冰"},{"authorName":"靳磊","id":"de7158b4-7756-4d0c-a561-8bf9b5c03976","originalAuthorName":"靳磊"},{"authorName":"闫宝东","id":"badd91d4-0bc4-4085-bbf7-871da3f66f14","originalAuthorName":"闫宝东"},{"authorName":"刘智深","id":"cd9ee77e-9ba0-4f60-b065-3c24870ceb46","originalAuthorName":"刘智深"}],"doi":"10.3969/j.issn.1007-5461.2013.01.010","fpage":"52","id":"589d508f-ba7c-49db-aa46-5f59d2ffcd89","issue":"1","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"a6bbfbd8-154a-4c6e-afbf-a36ce0937d63","keyword":"遥感","originalKeyword":"遥感"},{"id":"19422bc7-7a20-4c5d-903e-16b19d0b9396","keyword":"风廓线","originalKeyword":"风廓线"},{"id":"ec1e10fa-5f9c-4ca2-9507-6796b1e87f71","keyword":"多普勒激光雷达","originalKeyword":"多普勒激光雷达"},{"id":"bc77babb-0a9c-4267-bbb4-c80f56afeb0c","keyword":"测风激光雷达","originalKeyword":"测风激光雷达"},{"id":"e4ec9f01-8078-4142-be0b-210879318a0a","keyword":"同步比对","originalKeyword":"同步比对"}],"language":"zh","publisherId":"lzdzxb201301010","title":"车载测风激光雷达风廓线同步观测实验","volume":"30","year":"2013"},{"abstractinfo":"本文以UpWind/NREL 5 MW为参考风力机,外部风况为IEC标准的极端风剪切(EWS),在自主开发的基于柔性尾缘襟翼(DTEF)的“智能叶片”整机气动伺服弹性仿真平台的基础上,研究了基于DTEF智能叶片系统在EWS情况下叶根所受极限载荷的变化情况,并同时分析了其对塔架,传动机构及变桨机构的影响.结果表明:采用该基于柔性尾缘襟翼的智能叶片系统不仅有效地减少了叶根所受极限载荷,同时对塔架,传动机构及变桨机构等受到的极限载荷都发挥了非常积极的作用.最后,详细分析了该控制系统背后的流动控制机理.结果表明:尾缘襟翼的主动作用有效地减弱了由于极端风剪切引起的叶片与流动之间较强的流固耦合作用.","authors":[{"authorName":"张明明","id":"a4dc7bdc-f146-45c7-852e-13fd7ac3cd31","originalAuthorName":"张明明"},{"authorName":"余畏","id":"48cfdcae-9454-404c-b8d2-2f67b97acf7d","originalAuthorName":"余畏"},{"authorName":"谭斌","id":"f8e5a8bf-7239-444c-b721-235fdefb244a","originalAuthorName":"谭斌"},{"authorName":"徐建中","id":"51be9d78-2f3d-4b27-baae-3e487baa177c","originalAuthorName":"徐建中"}],"doi":"","fpage":"1951","id":"de4c87bf-fae9-4b73-a883-07847593e506","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"77ac1c5d-7774-4646-a53d-d9fef61030de","keyword":"智能叶片","originalKeyword":"智能叶片"},{"id":"8f8aeb1a-1901-416d-a2d7-0ebf412294f7","keyword":"尾缘襟翼","originalKeyword":"尾缘襟翼"},{"id":"671d8fe0-321e-4a18-b7e9-d84da28f82d1","keyword":"极限载荷","originalKeyword":"极限载荷"},{"id":"cbf2e892-bf69-4cae-a0b1-49c65adbb9c3","keyword":"流动机理","originalKeyword":"流动机理"}],"language":"zh","publisherId":"gcrwlxb201410013","title":"极端风剪切风况下的风电叶片载荷智能控制流动机理研究","volume":"35","year":"2014"}],"totalpage":66,"totalrecord":655}