{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用动静态高温高压釜装置,以某油田为应用背景,采用扫描电镜(SEM)和X射线衍射(XRD)技术探讨环境介质因素Ca2+、Mg2+对油管钢N80腐蚀行为的影响规律,试验结果显示,N80钢在CO2/H2S且高矿化度的环境下的腐蚀属于极严重腐蚀,在其他条件保持相同的情况下,随着介质中的Ca2+,Mg2+离子浓度的增大,N80钢的平均腐蚀速率呈先降低后增大趋势;腐蚀产物膜厚不断增大,内应力增大,导致膜层脱落引发点蚀.","authors":[{"authorName":"朱世东","id":"598ea644-2246-4817-882a-d66a88c74cd5","originalAuthorName":"朱世东"},{"authorName":"白真权","id":"02b8fdd9-b3b2-4f79-aa01-9bd997904ce8","originalAuthorName":"白真权"},{"authorName":"刘会","id":"7a5327d4-8c0a-457a-95ac-c1dc0e108fcd","originalAuthorName":"刘会"},{"authorName":"林冠发","id":"bee22fca-8cd3-4d7d-8767-e4196cee66a1","originalAuthorName":"林冠发"}],"doi":"","fpage":"724","id":"211fc380-62d1-4358-a108-007be9e3bb94","issue":"12","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"91128dd8-c6f6-4927-9e6a-d4593f751495","keyword":"N80钢","originalKeyword":"N80钢"},{"id":"4ba6334f-eef3-40fa-8599-7f0fc712cc60","keyword":"CO2/H2S介质","originalKeyword":"CO2/H2S介质"},{"id":"3eede3fa-e483-4e36-8bf9-a30646863aa3","keyword":"矿化","originalKeyword":"矿化"},{"id":"eda2aaa7-535d-4ddf-b007-8ac7ee5a9ea5","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"}],"language":"zh","publisherId":"fsyfh200812003","title":"Ca2+、Mg2+对N80钢腐蚀速率的影响","volume":"29","year":"2008"},{"abstractinfo":"采用高温高压釜试验,辅以失重法、X射线衍射、扫描电镜和电子能谱分析,对90 ℃时油管钢P110在模拟油井采出液中的CO2/H2S腐蚀行为进行了研究.结果表明,在本试验条件下,油管钢P110的腐蚀速率高达5.126 0 mm/a,腐蚀类型以H2S腐蚀(坑蚀)为主,腐蚀产物主要为硫化物.","authors":[{"authorName":"李萍","id":"e3083e1e-7d85-41df-a74a-fd82e89dfd20","originalAuthorName":"李萍"}],"doi":"10.3969/j.issn.1001-1560.2005.11.015","fpage":"51","id":"26717f44-de3c-41eb-8191-4b3c403d3fd5","issue":"11","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"d1576ed4-bd73-4fde-b319-5ecd7d64b0a2","keyword":"CO2/H2S腐蚀","originalKeyword":"CO2/H2S腐蚀"},{"id":"2edefb67-a023-42d7-b147-1d62114e2f0d","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"25fdd637-1796-4409-a4c5-e31d7e04ac1c","keyword":"腐蚀类型","originalKeyword":"腐蚀类型"},{"id":"546dd076-cc8a-4feb-ba3e-531167e7dcfa","keyword":"腐蚀产物","originalKeyword":"腐蚀产物"},{"id":"41508224-ae19-4c66-8fcd-5ade812fae8e","keyword":"P110钢","originalKeyword":"P110钢"}],"language":"zh","publisherId":"clbh200511015","title":"油管钢在CO2/H2S介质中的腐蚀行为","volume":"38","year":"2005"},{"abstractinfo":"利用高温高压反应釜模拟高含硫气田H2S/CO2共存环境,在流动湿H2S/CO2介质中进行腐蚀实验,辅以SEM,EDS和XRD,探讨了湿气介质中高H2S分压对API-X52和API-X60管线钢H2S/CO2腐蚀行为的影响.两种钢在湿气介质中的腐蚀速率均随H2S分压的升高而增加,X60腐蚀速率略高于X52,随着H2S分压由0.15MPa增至2.0MPa,腐蚀形态由全面腐蚀趋向局部腐蚀,腐蚀过程由H2S控制,腐蚀产物以四方晶系的FeS1-x(Mackinawite)为主.X60钢表面出现氢鼓泡,内部发生氢致开裂.","authors":[{"authorName":"杨建炜","id":"2aefca4d-2027-472f-ac0b-1ad7d4f2b0c3","originalAuthorName":"杨建炜"},{"authorName":"张雷","id":"8acf4021-16c2-49b5-92b0-2949e8d625a2","originalAuthorName":"张雷"},{"authorName":"丁睿明","id":"fcf1b697-e3fb-4bf3-8303-cf7996a5acda","originalAuthorName":"丁睿明"},{"authorName":"路民旭","id":"57a720ed-0128-4451-8cf2-c5e38bc59663","originalAuthorName":"路民旭"}],"doi":"10.3969/j.issn.1001-4381.2008.11.012","fpage":"49","id":"fb82b321-e4df-4709-a520-140861de703b","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"cd513347-d06d-4f92-afdd-1c393e78ea5d","keyword":"H2S/CO2","originalKeyword":"H2S/CO2"},{"id":"23fceaa9-6c27-46df-9edf-53bba4fec4bf","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"9c0a4fa9-583e-42dd-b1fd-498b0948a729","keyword":"管线钢","originalKeyword":"管线钢"},{"id":"afd6dd92-4073-4e40-8f0c-f70638693faf","keyword":"氢鼓泡","originalKeyword":"氢鼓泡"}],"language":"zh","publisherId":"clgc200811012","title":"管线钢在湿气介质中的H2S/CO2腐蚀行为研究","volume":"","year":"2008"},{"abstractinfo":"油田设施受产出水和CO2/H2S腐蚀严重.以长庆某天然气井产出水为腐蚀介质,采用失重法研究了不同腐蚀影响因素对N80钢的作用规律.结果表明,随着介质温度的升高,腐蚀速率先增加后降低,并在60℃时达到最大;Cl-的影响与温度具有基本相似的规律,在Cl-含量为30 g/L时腐蚀速率最大;随着pH值的增大,腐蚀速率持续减小,并在pH值为8.0左右时达到最低;随着CO:分压的增大,腐蚀速率呈单调增大趋势;随着H2S分压的增大,腐蚀速率先下降后又缓慢升高.","authors":[{"authorName":"徐海升","id":"1f62f765-5d79-4407-a11c-9d7edc09e92c","originalAuthorName":"徐海升"},{"authorName":"李谦定","id":"6eb9c59a-25f6-4027-b9f9-4f75c10e1e47","originalAuthorName":"李谦定"},{"authorName":"薛岗林","id":"3925ae26-f878-42f4-a418-31205e370d48","originalAuthorName":"薛岗林"},{"authorName":"郝凡","id":"ee6fdfa1-ff40-457e-8675-301a6bdd1c7a","originalAuthorName":"郝凡"}],"doi":"","fpage":"59","id":"c15c6321-125c-46a8-a43e-e76c7e3e9a88","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"7291c82c-736c-4434-9d54-1a60e99ad839","keyword":"腐蚀因素","originalKeyword":"腐蚀因素"},{"id":"26550c6d-5f33-4707-9424-6ff8ded988d9","keyword":"N80油管钢","originalKeyword":"N80油管钢"},{"id":"40a6198c-0e2f-4704-9ed9-7694752f8331","keyword":"CO2/H2S","originalKeyword":"CO2/H2S"},{"id":"5e8eb486-22a1-434d-b383-2deb46c9de4d","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"0b1404f1-6a7b-4f89-90f9-6ac5450c7922","keyword":"油气田产出水","originalKeyword":"油气田产出水"}],"language":"zh","publisherId":"clbh200907019","title":"N80油管钢在CO2/H2S水介质中的腐蚀研究","volume":"42","year":"2009"},{"abstractinfo":"1974-),男,硕士研究生,研究方向为腐蚀与防护.〖ZK)〗\nTel:0379-4231846〓E-mail:FQ)〗〖HT〗〖HJ〗〖HT5”SS〗\n\n〖JZ(〗〖HT2H〗〖STHZ〗〖WTHZ〗\n 采用高温高压釜,辅以失重法和扫描电镜,对不同H2S分压下(1.4 kPa,20 kPa,60 kPa,120 kPa)油管钢N80、P110的CO2/H2S腐蚀进行了研究.结果表明,在试验H2S分压范围内,随着H2S分压的升高,两种钢的腐蚀速率先增后降,且都在H2S分压为20 kPa时取得最大值.\n","authors":[{"authorName":"张清","id":"f88eb7e9-cc8e-450c-ab30-25f0e1d176d0","originalAuthorName":"张清"},{"authorName":"李全安","id":"3f2a76c4-910e-460e-92e0-e32747f6b202","originalAuthorName":"李全安"},{"authorName":"文九巴","id":"36b5bd93-7de6-4499-aa44-bf96901ef329","originalAuthorName":"文九巴"},{"authorName":"白真权","id":"4d51f2c6-1ccb-4525-a5ce-163eeacf467c","originalAuthorName":"白真权"}],"categoryName":"|","doi":"","fpage":"395","id":"154206fc-407b-400e-a5c2-9dfbb3a6677f","issue":"6","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"a5727bd7-5dc2-4bae-9114-40cfc0fc68d2","keyword":"H2S分压","originalKeyword":"H2S分压"},{"id":"a9f6880b-67d5-4fc0-b6f9-98687ddcad02","keyword":"null","originalKeyword":"null"},{"id":"afea430f-1221-42f4-8cc0-086b42eb86ce","keyword":"null","originalKeyword":"null"},{"id":"268846aa-05e9-4e94-8b37-90a3a5dbbcbe","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2004_6_5","title":"H2S分压对油管钢CO2/H2S腐蚀的影响","volume":"16","year":"2004"},{"abstractinfo":"采用高温高压釜,辅以失重法和扫描电镜,对不同H2S分压下(1.4 kPa,20 kPa,60 kPa,120kPa)油管钢N80、P110的CO2/H2S腐蚀进行了研究.结果表明,在试验H2S分压范围内,随着H2S分压的升高,两种钢的腐蚀速率先增后降,且都在H2S分压为20 kPa时取得最大值.","authors":[{"authorName":"张清","id":"9c9869f9-2d18-4f38-aadd-9e5e7ac4ba0a","originalAuthorName":"张清"},{"authorName":"李全安","id":"04a68215-609c-473b-b3a8-511010b59a27","originalAuthorName":"李全安"},{"authorName":"文九巴","id":"4a32578c-2fba-430b-83e3-b341f1529573","originalAuthorName":"文九巴"},{"authorName":"白真权","id":"ff3c4f1c-e9c1-48f8-86dd-e8845682764f","originalAuthorName":"白真权"}],"doi":"10.3969/j.issn.1002-6495.2004.06.015","fpage":"395","id":"76a4d617-b786-422b-8abd-5af65a81a7bb","issue":"6","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"04cf959f-3486-448c-aa77-eb78fb5abb9e","keyword":"H2S分压","originalKeyword":"H2S分压"},{"id":"f5849909-55f8-4750-92a6-37375daf7d4a","keyword":"N80钢","originalKeyword":"N80钢"},{"id":"3ced1c61-1594-4ae0-a84b-2a32cc2fee44","keyword":"P110钢","originalKeyword":"P110钢"},{"id":"64f04747-92a2-4de3-823c-2234ab3d2f6d","keyword":"CO2/H2S腐蚀速率","originalKeyword":"CO2/H2S腐蚀速率"}],"language":"zh","publisherId":"fskxyfhjs200406015","title":"H2S分压对油管钢CO2/H2S腐蚀的影响","volume":"16","year":"2004"},{"abstractinfo":"目的:研究 CO2分压对 CO2/H2S腐蚀的影响规律,为海底管道材料的选择提供参考依据。方法采用高温高压反应釜进行腐蚀模拟实验,对腐蚀前后的试样进行称量,计算腐蚀速率。通过SEM观察腐蚀产物膜形貌,通过 XRD 分析腐蚀产物膜成分。结果当 CO2/H2S 分压比较高(1200)时, CO2分压为0.3、0.5、1.0 MPa对应的腐蚀速率分别为1.87、3.22、5.35 mm/a,随着CO2分压升高,腐蚀速率几乎呈线性增大趋势。当CO2/H2S分压比较低(200)时,CO2分压为0.3、0.5、1.0 MPa对应的腐蚀速率分别为3.47、3.64、3.71 mm/a,CO2分压变化对腐蚀速率的影响并不显著。当CO2/H2S分压比较高(1200)时,腐蚀产物以FeCO3为主,腐蚀受CO2控制;此时低CO2分压下的腐蚀产物膜较完整致密,高CO2分压下的腐蚀产物膜局部容易破裂,对基体保护性下降,因此腐蚀速率随CO2分压升高而增大。当CO2/H2S分压比较低(200)时,腐蚀产物以FeS为主,腐蚀受H2S控制;此时在不同CO2分压条件下,腐蚀产物均较完整致密,因此腐蚀速率相对较低,并未随着CO2分压升高显著增大。结论 CO2分压对CO2/H2S腐蚀速率的影响与CO2/H2S分压比密切相关,海底管道材料选择不仅要考虑CO2分压的影响,还要考虑CO2/H2S分压比的影响。","authors":[{"authorName":"胡丽华","id":"f280ce69-543e-4cf4-aef0-9827c396ebd6","originalAuthorName":"胡丽华"},{"authorName":"常炜","id":"0975a684-e4a3-4d3e-b9fa-685aa9b8f75e","originalAuthorName":"常炜"},{"authorName":"余晓毅","id":"8ba6aa92-f291-474d-ab72-6daefc78064e","originalAuthorName":"余晓毅"},{"authorName":"田永芹","id":"becb8ae8-7d85-465b-905a-b44880d66a6a","originalAuthorName":"田永芹"},{"authorName":"于湉","id":"6f973977-5d48-47db-836d-871203976259","originalAuthorName":"于湉"},{"authorName":"张雷","id":"0dee1d52-c516-4e54-b0af-6adf4f06f9eb","originalAuthorName":"张雷"},{"authorName":"路民旭","id":"fe9f6c19-0e45-4f06-ac3c-b079eaa442b9","originalAuthorName":"路民旭"}],"doi":"10.16490/j.cnki.issn.1001-3660.2016.05.008","fpage":"56","id":"1e387d9f-f124-4fe2-b772-7a4df48fef08","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"3bf0d594-10b1-42ac-843b-dd562ce75190","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"91d6bb37-a8eb-4cf6-a359-f7a12e272c84","keyword":"海底管道","originalKeyword":"海底管道"},{"id":"ddd4be09-aef5-4fa2-8ff6-4332ceb64fe9","keyword":"CO2分压","originalKeyword":"CO2分压"},{"id":"c103409e-b31b-4907-b70b-4e23a20d9526","keyword":"CO2/H2S分压比","originalKeyword":"CO2/H2S分压比"},{"id":"77403ab1-614b-48e4-9442-06a809f50eb4","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"bfc34a86-6456-4887-81c7-47bfb990776f","keyword":"腐蚀产物膜","originalKeyword":"腐蚀产物膜"}],"language":"zh","publisherId":"bmjs201605008","title":"CO2分压对碳钢海底管道CO2/H2S腐蚀的影响","volume":"45","year":"2016"},{"abstractinfo":"利用高温高压反应釜模拟高含硫气田H2S/CO2共存环境, 分别在流动湿气和溶液介质中进行API-X60腐蚀实验, 探讨了高H2S分压对腐蚀行为的影响. X60管线钢的腐蚀速率在湿气介质中随H2S分压升高而增加, 在溶液介质中则先升高后降低, 腐蚀形态均由全面腐蚀趋于局部腐蚀, 腐蚀产物以硫铁化合物(FexSy)为主. H2S分压为2.0 MPa条件下, 溶液介质中形成的腐蚀产物中富S相比例明显增加, HS-和Cl-穿过膜层缺陷引发点蚀, 多孔且不连续的富S膜层进一步促进点蚀发展.","authors":[{"authorName":"杨建炜","id":"cac743b9-80d7-4c96-abe1-adc1e4978389","originalAuthorName":"杨建炜"},{"authorName":"张雷","id":"0db812eb-2a2e-41c5-b4ea-89150e015975","originalAuthorName":"张雷"},{"authorName":"丁睿明","id":"cb180c4a-40d3-4c01-900d-7a49791e17c5","originalAuthorName":"丁睿明"},{"authorName":"孙建波","id":"c8f515fa-b121-477e-8370-e3263eb0cb42","originalAuthorName":"孙建波"},{"authorName":"路民旭","id":"677a877e-0103-4892-83a5-4db4b8503f3d","originalAuthorName":"路民旭"}],"categoryName":"|","doi":"","fpage":"1366","id":"7ad166ba-f35c-4381-8338-78dd881df152","issue":"11","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"aa4fdde6-c138-4b53-aaf1-d62a1c608ba0","keyword":"X60管线钢","originalKeyword":"X60管线钢"},{"id":"b78ad59b-b08b-4b5c-8d6d-3f8c10b2f68b","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2008_11_6","title":"X60管线钢在湿气和溶液介质中的H2S/CO2腐蚀行为","volume":"44","year":"2008"},{"abstractinfo":"利用高温高压反应釜模拟高含硫气田H2S/CO2共存环境,分别在流动湿气和溶液介质中进行API-X60腐蚀实验,探讨了高H2S分压对腐蚀行为的影响.X60管线钢的腐蚀速率在湿气介质中随H2S分压升高而增加,在溶液介质中则先升高后降低,腐蚀形态均由全面腐蚀趋于局部腐蚀,腐蚀产物以硫铁化合物(FexSy)为主.H2S分压为2.0 MPa条件下,溶液介质中形成的腐蚀产物中富S相比例明显增加,HS-和Cl-穿过膜层缺陷引发点蚀,多孔且不连续的富S膜层进一步促进点蚀发展.","authors":[{"authorName":"杨建炜","id":"865b4057-fddc-49a7-a53b-94cd9d91c5fb","originalAuthorName":"杨建炜"},{"authorName":"张雷","id":"43afc1e8-8193-40af-b5bc-fa8e52662e58","originalAuthorName":"张雷"},{"authorName":"丁睿明","id":"2d1aae7b-d2c0-4b6e-ae65-14cc97db6559","originalAuthorName":"丁睿明"},{"authorName":"孙建波","id":"cb0940f7-e97d-4340-ae1a-006e74c0fae9","originalAuthorName":"孙建波"},{"authorName":"路民旭","id":"c4954fca-6b44-4730-9a9a-5a366513c849","originalAuthorName":"路民旭"}],"doi":"10.3321/j.issn:0412-1961.2008.11.015","fpage":"1366","id":"6cc5a51b-fb0c-4dd7-9c62-1e5b3d048ce4","issue":"11","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"19fecf73-3457-44c6-acdf-43c600dcbe87","keyword":"X60管线钢","originalKeyword":"X60管线钢"},{"id":"7e02a2cd-2322-4bd8-badc-2ea0815ad40d","keyword":"H2S/CO2腐蚀","originalKeyword":"H2S/CO2腐蚀"},{"id":"7cd2ed52-5647-4d2c-bae1-4baf49136fd3","keyword":"湿气","originalKeyword":"湿气"},{"id":"93cc9cea-2bb2-415e-abcd-37412837cf34","keyword":"H2S分压","originalKeyword":"H2S分压"}],"language":"zh","publisherId":"jsxb200811015","title":"X60管线钢在湿气和溶液介质中的H2S/CO2腐蚀行为","volume":"44","year":"2008"},{"abstractinfo":"采用高温高压釜、失重法和扫描电镜, 对不同CO2分压(310.264 2、 930.792 6、1 551.321 0、2 171.849 4 kPa)条件下油管钢N80和P110的CO2/H2S腐蚀进行了研究.结果表明,随着CO2分压的升高,两种钢的CO2/H2S腐蚀速率均单调增加;除了CO2分压极低的情况以外,P110钢的腐蚀速率总是大于N80钢.","authors":[{"authorName":"张清","id":"9153ef4e-710f-4f51-b360-5ab4a7c4016d","originalAuthorName":"张清"},{"authorName":"李全安","id":"4ddaa442-3d47-4650-a61c-d1a9bdb787f3","originalAuthorName":"李全安"},{"authorName":"文九巴","id":"2eb1f844-3606-4446-8682-8e7180b7cd4d","originalAuthorName":"文九巴"},{"authorName":"白真权","id":"fc096973-c916-429c-92a9-13877ec9b59b","originalAuthorName":"白真权"}],"doi":"","fpage":"72","id":"73113d98-0a2b-442a-9a84-c5e4b12fdad5","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"cd9d4258-52b9-4ca7-85ea-31de9bad5abc","keyword":"CO2分压","originalKeyword":"CO2分压"},{"id":"498ed8a3-6c3b-49a9-b971-33eac92f8ba4","keyword":"N80钢","originalKeyword":"N80钢"},{"id":"0381df05-8784-45e4-851f-95584180c1bd","keyword":"P110钢","originalKeyword":"P110钢"},{"id":"29232fc4-9741-4c77-bd4c-89593b745d4b","keyword":"CO2/H2S腐蚀速率","originalKeyword":"CO2/H2S腐蚀速率"}],"language":"zh","publisherId":"gtyjxb200404018","title":"CO2分压对油管钢CO2/H2S腐蚀的影响","volume":"16","year":"2004"}],"totalpage":10174,"totalrecord":101734}