{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以粉煤灰(coal fly ash,FA)为原料,与硫酸铈和无水碳酸钠混合经高温焙烧制得Ce/Na2CO3/FA复合材料用于模拟废水Cd2+的吸附研究,考察了溶液pH、起始Cd2+浓度、吸附时间及温度等因素对吸附的影响,探讨了吸附动力学、平衡和热力学.结果表明:Ce/Na2 CO3/FA复合吸附剂对溶液中浓度为500 mg·L-的Cd2在pH为6.0、25℃下接触时间为120 min时的去除率可达98%,且在不同温度下的吸附过程均符合准二级吸附动力学方程,吸附速率随温度升高而增大,求得表观活化能为44.59 kJ·mol-1.Ce/Na2 CO3/FA对Cd2+在不同温度(25℃~45℃)下的吸附行为均可用Langmuir等温式进行很好地描述,吸附系数b和饱和吸附量q max均随温度升高而增大,相应值的变化分别在0.606 L·mg-1~ 0.0944 L·mg-1和80.00mg·g-1~ 95.24mg·g-1之间.所得热力学参数△G、△H和△S的值表明吸附具有自发、吸热、熵增的特性.","authors":[{"authorName":"李北罡","id":"9e7e5862-ad6d-455b-b5e5-b7c56951702a","originalAuthorName":"李北罡"},{"authorName":"赵丽媛","id":"f134b124-2ff9-4e0c-818f-0d1175b35d5f","originalAuthorName":"赵丽媛"},{"authorName":"米敬","id":"9246dd8a-0587-4d63-8582-16aba53ac309","originalAuthorName":"米敬"},{"authorName":"丁磊","id":"d66582d3-b2a4-497b-946f-29de2ee0107e","originalAuthorName":"丁磊"}],"doi":"","fpage":"13","id":"dfc0ca9a-5868-471a-a413-7e9ecd53ebd7","issue":"6","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"c42cda97-626c-43ab-acc3-dc5bbe452a66","keyword":"粉煤灰","originalKeyword":"粉煤灰"},{"id":"4d98097e-2cb9-44b6-8875-0524de1a582e","keyword":"铈","originalKeyword":"铈"},{"id":"83875fb1-3fa0-422c-84f8-bb7b72ca96cc","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"1045760d-d88c-4937-953c-d31575edbb96","keyword":"Cd2+","originalKeyword":"Cd2+"},{"id":"eb6cf6d7-89d7-4b82-865d-af6ccc6bd996","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"xitu201306003","title":"粉煤灰基稀土复合材料对废水Cd2+的吸附研究","volume":"34","year":"2013"},{"abstractinfo":"采用高锰酸钾改性、酸性甲醛改性、酯化改性、未改性花生壳去除模拟废水中的Cd2+,考察了恒温振荡时间、溶液pH、花生壳投加量、Cd2+的初始浓度及温度五个因素对花生壳去除Cd2+效果的影响,结合四种类型花生壳的再生实验优选出最佳改性方法.结果表明:高锰酸钾改性为最优改性.在吸附t为120 min、pH =6、花生壳投加质量为0.2 g、Cd2+初始质量浓度为20mg/L及θ为30℃时,去除率最大(97.56%),解析率和再生去除率为90.2%和86.87%.在此基础上对原因进行了初步分析.","authors":[{"authorName":"陈伟华","id":"1bf77b02-f77f-48e1-9559-48694c242cf9","originalAuthorName":"陈伟华"},{"authorName":"徐大勇","id":"600ba4c8-5bb6-46a9-b236-2d1c05987091","originalAuthorName":"徐大勇"},{"authorName":"董洪霞","id":"3b3c2950-593a-4b74-a87e-49f7ad1df9b6","originalAuthorName":"董洪霞"}],"doi":"10.3969/j.issn.1001-3849.2015.12.010","fpage":"38","id":"46682f04-7426-4438-8772-aa1525980948","issue":"12","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"74156f55-dd0f-40a2-9511-5df4cf5eb1a0","keyword":"高锰酸钾改性","originalKeyword":"高锰酸钾改性"},{"id":"0421dfba-5b48-484d-a6da-12ce2bcdc716","keyword":"酸性甲醛改性","originalKeyword":"酸性甲醛改性"},{"id":"74730f2b-c345-4180-8c30-a7c4b7e07f56","keyword":"酯化改性","originalKeyword":"酯化改性"},{"id":"3c8dc69c-4816-452a-b5d7-863e0354b7c9","keyword":"Cd2+废水","originalKeyword":"Cd2+废水"},{"id":"21df01c7-7755-4d3e-b4cf-b1bbe37e31e8","keyword":"花生壳","originalKeyword":"花生壳"}],"language":"zh","publisherId":"ddjs201512010","title":"不同改性花生壳处理含Cd2+废水的比较研究","volume":"37","year":"2015"},{"abstractinfo":"用盐酸溶液对海泡石处理后在450 ℃下灼烧,制备出改性海泡石.在动态条件下,研究了改性海泡石对重金属离子Pb2+、Cu2+、Cd 2+的吸附效果及条件.探讨了改性海泡石对重金属离子Pb2+、Cu2+、Cd 2+的吸附机理.含Pb2+、Cu2+、Cd2+的电镀废水经改性海泡石吸附后 ,重金属离子含量显著低于国家排放标准.","authors":[{"authorName":"胡忠于","id":"2edd9f71-7a81-468c-a044-ac61298d1007","originalAuthorName":"胡忠于"},{"authorName":"罗道成","id":"5d4e9dc8-285b-4c93-a4c6-11a3245a64ca","originalAuthorName":"罗道成"},{"authorName":"易平贵","id":"4eefe638-0dec-4c23-b0c2-e272e3b14624","originalAuthorName":"易平贵"},{"authorName":"陈安国","id":"92250a21-cab5-41c0-b517-09c1e4ab240e","originalAuthorName":"陈安国"}],"doi":"10.3969/j.issn.1001-1560.2002.05.019","fpage":"45","id":"fab43e16-fbdd-4717-96a6-f7a3a34af522","issue":"5","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"dd1b2317-555d-4065-aa3c-ca5f981ee566","keyword":"改性海泡石","originalKeyword":"改性海泡石"},{"id":"eede66f1-a3c7-4239-b1d7-bec064ae28fd","keyword":"吸附","originalKeyword":"吸附"},{"id":"92a150c6-3a9e-4b11-b607-a7812f96a601","keyword":"重金属离子","originalKeyword":"重金属离子"},{"id":"29acb115-f42b-4bdc-a2a0-047ea121f8b5","keyword":"电镀废水","originalKeyword":"电镀废水"}],"language":"zh","publisherId":"clbh200205019","title":"改性海泡石对电镀废水中Pb2+、Cu2+、Cd2+的吸附","volume":"35","year":"2002"},{"abstractinfo":"以粉末活性炭为主要原料,采用普通硅酸盐水泥熟料作胶凝剂,制备成型无机胶凝炭,重点研究其对水溶液中二价镉离子(Cd2+)的吸附特性.用BET对无机胶凝炭试样的孔隙结构进行表征,采用原子吸收分光光度计分析Cd2+溶液浓度,并探讨Cd2初始浓度、pH值、作用时间等因素对试样吸附效果的影响.实验结果表明:试样对水中Cd2+的吸附比单纯的粉末活性炭效果更好,在相同条件下,试样除镉率提高了13%,平衡吸附时间缩短了20min;试样还具备良好的循环使用特性,循环使用50次时,平均除镉率仍高达77.95%.","authors":[{"authorName":"喻琼","id":"7d04d8f2-8332-4fd3-aa2f-6af3384a6ee9","originalAuthorName":"喻琼"},{"authorName":"刘晓芳","id":"70d1279c-bbaf-4c2a-b1d7-a35e27c7348f","originalAuthorName":"刘晓芳"},{"authorName":"吴任平","id":"fbfe4982-7931-4a13-aed0-803f4dda81a4","originalAuthorName":"吴任平"},{"authorName":"陈婉君","id":"44ca93d4-f77d-4902-83bc-280222895562","originalAuthorName":"陈婉君"},{"authorName":"王玲","id":"c9f00c64-43ee-45fb-8e3a-bb6eb5c54951","originalAuthorName":"王玲"}],"doi":"","fpage":"1562","id":"0734b664-45f8-4f32-b90c-cb7826fc9304","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"cd5baa92-aae3-4c8f-a782-cea41b3d505f","keyword":"无机胶凝剂","originalKeyword":"无机胶凝剂"},{"id":"7a9c4ba9-ec30-4fcd-91d8-807bb708c465","keyword":"成型活性炭","originalKeyword":"成型活性炭"},{"id":"b358a1bc-7050-4f47-8edb-9673b55cca8b","keyword":"Cd2+","originalKeyword":"Cd2+"},{"id":"44b679d3-fbcc-4c39-bd12-6da5b3899fe9","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"gsytb201406054","title":"无机胶凝炭对Cd2+的吸附研究","volume":"33","year":"2014"},{"abstractinfo":"以羟丙基甲基纤维素(HPMC)为软模板,制备了碳羟基磷灰石纳米球,用能谱分析(EDS)、红外光谱(FT-IR)、透射电镜(TEM)及X射线衍射(XRD)等实验手段对产物进行了相关表征,研究了羟基磷灰石纳米球对废水溶液中镉离子的去除行为.研究表明,所制备的碳羟基磷灰石为球形晶体,平均直径为20~30nm,且分散均匀,其对含镉废水的净化能力明显高于市售粉体羟基磷灰石.","authors":[{"authorName":"叶桂生","id":"4ef95059-86eb-4402-bafc-a8cb0c732573","originalAuthorName":"叶桂生"}],"doi":"10.3969/j.issn.1001-1625.2006.05.030","fpage":"143","id":"39cc7912-459c-4348-badd-692a7e2a438e","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"6d276357-2dce-439e-9339-0a990386da84","keyword":"碳羟基磷灰石","originalKeyword":"碳羟基磷灰石"},{"id":"6f2f4180-338e-4a39-b7fa-30fd8d08128d","keyword":"软模板","originalKeyword":"软模板"},{"id":"775965db-ecb6-4765-b0d4-d68df5ec6911","keyword":"镉离子","originalKeyword":"镉离子"},{"id":"eea89563-bd78-4bee-9007-0b3e13dd68eb","keyword":"羟丙基甲基纤维素","originalKeyword":"羟丙基甲基纤维素"}],"language":"zh","publisherId":"gsytb200605030","title":"碳羟基磷灰石纳米球的制备及其在含Cd2+废水处理中的应用","volume":"25","year":"2006"},{"abstractinfo":"本文以粉末法制备TiO2涂层的玻璃微流控芯片作为光催化反应器,采用UV-LED点光源为紫外光源,实现了水样中EDTA的光催化降解,并用铋膜电极差分脉冲溶出伏安法在线检测微量水样中的重金属离子Cd2+.水样中的Cd2+由于EDTA的络合作用无法在铋膜电极上产生电流信号,而当水样在光催化微反应器中经紫外光催化后,由于EDTA与Cd2+的配合物结构遭破坏,因此释放出游离的Cd2,从而使Cd2-的电流信号得到一定程度的恢复.Cd2+的电流恢复程度越大,表明EDTA被光催化降解的程度越高.本文考察了光照强度、反应液流速和氧气流速、pH等因素对EDTA光催化降解效率的影响.在光照强度为120mW/cm2、反应液流速为50 μL/h、氧气流速为850μL/h、pH为4.4条件下,水样中EDTA的光催化降解率效果最佳,水样中Cd2+的电流恢复程度可达92.6%.反应液流速为300 μL/h时,Cd2+的电流恢复率为60.0%,重复光催化反应5次的RSD为5.2%,具有较好的重现性.本文建立了水样EDTA光催化降解及Cd2+在线检测的微分析系统,在线检测所需的样品体积仅为0.3 mL,完成一个水样分析的时间约为60 min.","authors":[{"authorName":"朱哲欣","id":"7881f0ea-bebf-4991-b90c-72bacf1d839e","originalAuthorName":"朱哲欣"},{"authorName":"叶美英","id":"78a2c761-cfcc-43a6-9595-41443b1c8dc9","originalAuthorName":"叶美英"}],"doi":"10.7517/j.issn.1674-0475.2016.05.444","fpage":"444","id":"073399c7-aef5-4ddb-9f49-853e7a83f861","issue":"5","journal":{"abbrevTitle":"YXKXYGHX","coverImgSrc":"journal/img/cover/YXKXYGHX.jpg","id":"74","issnPpub":"1674-0475","publisherId":"YXKXYGHX","title":"影像科学与光化学 "},"keywords":[{"id":"f83fac17-256a-41cb-9564-15ca8c79d3ff","keyword":"光催化微反应器","originalKeyword":"光催化微反应器"},{"id":"b39ce4c3-6c52-4fe4-99fd-5ce5cac06610","keyword":"EDTA降解","originalKeyword":"EDTA降解"},{"id":"5b0ecc05-574b-42fb-a8ee-b045210fbc66","keyword":"Cd2+","originalKeyword":"Cd2+"},{"id":"f6c32be6-4478-4fbd-890a-d742a524324f","keyword":"在线检测","originalKeyword":"在线检测"}],"language":"zh","publisherId":"ggkxyghx201605005","title":"光催化微反应器中水样光催化降解及Cd2+在线检测","volume":"34","year":"2016"},{"abstractinfo":"通过醋酸钯催化的Suzuki偶联反应,在室温下于水溶液中通过超分子自组装制备了以α-CD(α-环糊精)为大环,异酞酸为端塞,二苯乙烯衍生物为链的新型超分子轮烷.通过加入浓HCl调节反应溶液的pH值<1,用正丁醇萃取,将含有α-CD大环的轮烷分子与水溶液中多余的α-CD分离,再用硅胶柱层析分离得到纯的只含有1个α-CD大环的轮烷分子,从而简化了分离难度.采用1H NMR和质谱分析结果表明,所制得的轮烷为α-CD(主体)与哑铃状分子(客体)的摩尔比为1:1的[2]轮烷.","authors":[{"authorName":"刘骥军","id":"7611df20-bc9c-4da2-9a6d-19f48ca4f638","originalAuthorName":"刘骥军"},{"authorName":"田禾","id":"7ed15bc4-fbf5-4c91-9bd7-d53eefe49c7b","originalAuthorName":"田禾"}],"doi":"10.3969/j.issn.1000-0518.2007.08.003","fpage":"863","id":"eb7f2f43-b2ac-438c-b0b4-ff992ec4063e","issue":"8","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"469a5f4a-df9e-44b0-a2e5-784d8a2f9c74","keyword":"α-环糊精","originalKeyword":"α-环糊精"},{"id":"16a8488d-698c-42e3-809c-2786ae8a4734","keyword":"轮烷","originalKeyword":"轮烷"},{"id":"ad97caef-ae69-4a23-9d0d-71d690c64f08","keyword":"超分子","originalKeyword":"超分子"},{"id":"0f0999fd-a047-4d56-a753-903d48dbaad5","keyword":"自组装","originalKeyword":"自组装"}],"language":"zh","publisherId":"yyhx200708003","title":"含有α-CD的新型[2]轮烷的合成","volume":"24","year":"2007"},{"abstractinfo":"在水热条件下利用间苯二乙酸,4,4'-二联吡啶和硝酸镉反应生成配位聚合物{[Cd(pda)(4,4'-bipy)(H2O)]·H2O}n(1)(1,3-H2pda=间苯二乙酸、4,4'-bipy=4,4'-二联吡啶).其晶体结构采用红外光谱、热重分析及单晶X射线衍射等手段进行了表征.结构分析表明该配位聚合物属三斜晶系,空间群为Pī;晶体学参数:a=0.7991(4)nm,b=1.1514(5) nm,c=1.2075(5) nm;α=107.352(6)°,β=97.505(6)°,γ=108.925(6)°,V=970.8(8) nm3.其基本结构单元由两个Cd(Ⅱ)离子、两个间苯二乙酸根、四个4,4'-二联吡啶、两个水分子组成.有趣的是所有的闭合环[Cd2(pda)2]通过两线状4,4 '-二联吡啶支撑连接形成一维管状配位聚合物.同时对该配位聚合物的荧光性质进行研究,发现在366 nm处呈现较强的荧光发射(λex=300 nm).","authors":[{"authorName":"张美丽","id":"cd5e3e60-74e0-4853-bb38-1a68b0bfface","originalAuthorName":"张美丽"},{"authorName":"闫洪涛","id":"57f3c9ba-5e3d-4084-9e7f-c9d33883aefe","originalAuthorName":"闫洪涛"},{"authorName":"王敏","id":"77bd3739-540e-42e1-ad34-9a474d35c799","originalAuthorName":"王敏"}],"doi":"","fpage":"2429","id":"2d3bddf9-9711-485d-add3-6e7f2897ed16","issue":"9","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"046563e5-7a3a-420b-8db9-c26325f3d1b2","keyword":"配位聚合物","originalKeyword":"配位聚合物"},{"id":"e44d974c-e28e-4e03-b2c0-36419476efeb","keyword":"{[Cd(pda)(4,4'-bipy) (H2O)]·H2O}n","originalKeyword":"{[Cd(pda)(4,4'-bipy) (H2O)]·H2O}n"},{"id":"e552be1a-3af7-4a8b-b236-923f92221247","keyword":"晶体结构","originalKeyword":"晶体结构"},{"id":"fb8c0038-8286-4e28-bfc3-9918692cccba","keyword":"荧光性质","originalKeyword":"荧光性质"}],"language":"zh","publisherId":"rgjtxb98201409044","title":"配位聚合物{[Cd(pda)(4,4'-bipy)(H2O)]·H2O}n的合成、晶体结构与荧光性质","volume":"43","year":"2014"},{"abstractinfo":"蔗渣经多氨基改性处理后,得到多氨基改性蔗渣吸附剂.考察了多氨基改性蔗渣吸附剂对模拟废水中Pb2+、Zn2+、Cd2+、Cu2+的吸附性能,主要包括吸附时间、溶液pH值和温度对吸附量的影响以及吸附等温式的研究.研究表明,在实验范围内,Pb2+的吸附平衡时间为12h,适宜吸附Pb2+的pH值范围在4~5,Pb2+的最大吸附量为34.96mg/g;Zn2+的吸附平衡时间为20h,适宜吸附Zn2+的pH值在6.2左右,Zn2+的最大吸附容量为2.24mg/g;Cd2+的吸附平衡时间为20h,适宜吸附Cd2+的pH值在5.0左右,Cd2+的最大吸附容量为10.40mg/g; Cu2+的吸附平衡时间为20h;适宜吸附Cu2+的pH值在5.0左右;Cu2+在不同温度下的最大吸附容量为2.60mg/g.多氨基改性蔗渣对Pb2+、Zn2+、Cd2+、Cu2+的吸附均可用Freundlich方程和Langmuir方程描述.","authors":[{"authorName":"伍婵翠","id":"282e1a44-1981-4944-ad85-b9ad34df8349","originalAuthorName":"伍婵翠"},{"authorName":"梁英","id":"34b3fb9c-017a-43c0-a590-c966426887cc","originalAuthorName":"梁英"},{"authorName":"唐新智","id":"27f9695b-6751-4aab-801d-c7d7b770e4f6","originalAuthorName":"唐新智"},{"authorName":"莫异业","id":"b9ebdfdb-cb4a-43a6-aa9b-526f7bd2ca76","originalAuthorName":"莫异业"}],"doi":"","fpage":"86","id":"d0d3791f-0d1f-4480-8dac-0200100629d6","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"cc336163-4e66-41d7-9075-ae7cb647c76f","keyword":"多氨基改性蔗渣","originalKeyword":"多氨基改性蔗渣"},{"id":"f1940c74-59cf-4554-a985-c88d69509735","keyword":"纤维素","originalKeyword":"纤维素"},{"id":"82262e08-0c51-485f-8766-0b373c13f8b1","keyword":"Pb2+","originalKeyword":"Pb2+"},{"id":"e3b27de7-ed53-40d0-8c46-d969fbca80d1","keyword":"Zn2+","originalKeyword":"Zn2+"},{"id":"475d8ea7-8d68-4e68-bbb7-817c0876f6dc","keyword":"Cd2+","originalKeyword":"Cd2+"},{"id":"dceaf483-5ace-4436-ba39-bd74402c52b1","keyword":"Cu2+","originalKeyword":"Cu2+"},{"id":"0315b106-c2a9-43ea-9ac0-0993701e62d6","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"cldb201212025","title":"多氨基改性蔗渣对水溶液中pb2+、Zn2+、Cd2+、Cu2+吸附性能的研究","volume":"26","year":"2012"},{"abstractinfo":"胶团强化超滤法是一种将表面活性剂技术和超滤技术结合的新型、高效的重金属废水治理方法.以十二烷基硫酸钠(SDS)为表面活性剂,对含单一镉、锌、铅溶质以及混合溶质体系进行了胶团强化超滤研究,考察了胶团对Cd2+,Zn2+,Pb2+的竞争吸附性能.研究发现,当溶液中多种二价重金属离子存在时,各离子之间存在与SDS胶团的竞争吸附,竞争能力为Pb2+>Zn2+>Cd2+;Cd-Zn有明显的协同吸附效应,而Cd-Pb,Zn-Pb则表现为拮抗吸附.","authors":[{"authorName":"黄瑾辉","id":"6fdc917d-b40c-4fa2-9c41-bc68576c6995","originalAuthorName":"黄瑾辉"},{"authorName":"曾光明","id":"0ad438e7-7a20-4dfd-86b6-57c2046815f5","originalAuthorName":"曾光明"},{"authorName":"张振","id":"f8c59deb-96d3-4317-a804-203de788d4cf","originalAuthorName":"张振"},{"authorName":"方瑶瑶","id":"1767a2c4-3053-4cfd-9ad6-5c5e5164ebd6","originalAuthorName":"方瑶瑶"}],"doi":"10.3969/j.issn.1007-8924.2008.04.005","fpage":"26","id":"0ca7b4ff-cfcb-4137-a8c7-beca95e4f5ff","issue":"4","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"26964c65-c2f4-4dac-bc97-894e6c28b332","keyword":"超滤","originalKeyword":"超滤"},{"id":"4c266471-0d8e-4505-8abd-382a3e604daa","keyword":"表面活性剂胶团","originalKeyword":"表面活性剂胶团"},{"id":"2f2a1bd7-5c6f-4b49-a37e-9c3e3878d567","keyword":"胶团强化超滤","originalKeyword":"胶团强化超滤"},{"id":"05821e83-1df6-4485-9e63-4f43784a900f","keyword":"截留率","originalKeyword":"截留率"}],"language":"zh","publisherId":"mkxyjs200804005","title":"胶团强化超滤中SDS胶团对Cd2+,Zn2+和Pb2+的竞争吸附","volume":"28","year":"2008"}],"totalpage":8119,"totalrecord":81189}