{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用浸渍法制备了Ni/HZSM-5双功能催化剂,考察了焙烧温度对催化剂结构及其催化山梨醇水相加氢合成C5~C6烷烃性能的影响.结果表明,在金属中心和酸性载体的协同作用下,通过山梨醇中C-O键加氢和异构化高选择性合成了C5~C6烷烃.经500℃焙烧的Ni/HZSM-5催化剂上山梨醇水相加氢的活性最高,山梨醇转化率为62.0%,戊烷和己烷的总选择性为76.4%,其中异己烷选择性达45.4%.对催化剂进行N2物理吸附、X射线衍射、NH3程序升温脱附和H2程序升温还原等表征后发现,经500℃焙烧催化剂的有效比表面积和孔体积均明显增大,HZSM-5负载的硝酸镍分解成较小晶粒的NiO,表面酸量适中,且Ni物种与载体相互作用较强,较易被H2还原,Ni还原度达100%.这是其催化活性最高的原因.","authors":[{"authorName":"邱珂","id":"4913b5a2-5e95-4ca1-90d9-4a2209810869","originalAuthorName":"邱珂"},{"authorName":"","id":"9821cfc8-6140-40da-a681-78955da6b22c","originalAuthorName":"章青"},{"authorName":"江婷","id":"84114c09-fe52-4575-82dc-895e61525f2a","originalAuthorName":"江婷"},{"authorName":"马隆龙","id":"27345679-e640-4f45-94d7-3d9472b22781","originalAuthorName":"马隆龙"},{"authorName":"王铁军","id":"2ee807bf-a007-4bf5-b06b-6f3e7e0809b4","originalAuthorName":"王铁军"},{"authorName":"张兴华","id":"67dacef5-0036-4de7-bf0d-adeb1bd043c5","originalAuthorName":"张兴华"},{"authorName":"丘明煌","id":"48946cc3-f5a4-4067-9647-7253e06e2ae7","originalAuthorName":"丘明煌"}],"doi":"10.3724/SP.J.1088.2011.01016","fpage":"612","id":"c07f5c44-7faa-43c7-b240-21fa184e7c24","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"f07f5455-a69f-48fa-a9a8-bae94021a528","keyword":"镍","originalKeyword":"镍"},{"id":"82015fec-2040-45be-9805-a20fd109d280","keyword":"HZSM-5分子筛","originalKeyword":"HZSM-5分子筛"},{"id":"4a6cd727-d600-4778-a397-a85ca01efc30","keyword":"山梨醇","originalKeyword":"山梨醇"},{"id":"0998f8db-e054-4649-9c68-6aa23022961f","keyword":"水相加氢","originalKeyword":"水相加氢"},{"id":"8fce3312-3edf-45fb-842b-2cad27812aaa","keyword":"烷烃","originalKeyword":"烷烃"}],"language":"zh","publisherId":"cuihuaxb201104014","title":"Ni/HZSM-5催化剂的结构及其催化山梨醇水相加氢合成烷烃性能","volume":"32","year":"2011"},{"abstractinfo":"阐述了汽车尾气净化Pd催化剂的技术特点、现状及展望,分析了Al2O3、稀土氧化物对汽车尾气净化Pd催化剂性能的影响,对比了不同制备方法的优异性,讨论了单Pd催化剂的可行性和实用价值,以及未来的研究方向、技术难点和热点.","authors":[{"authorName":"","id":"b830a5c0-3560-49e2-b6e1-76d0d90dfe0c","originalAuthorName":"章青"},{"authorName":"贺小昆","id":"7a4c31ce-681a-471c-9894-b46dc06fee8a","originalAuthorName":"贺小昆"},{"authorName":"黄荣光","id":"660ac12b-aed8-49e0-93eb-351c18cc3005","originalAuthorName":"黄荣光"},{"authorName":"赵云昆","id":"848bf361-028c-4e24-a4eb-b7288b3e0374","originalAuthorName":"赵云昆"},{"authorName":"李兵","id":"f6b73e46-baeb-4532-8bee-7d4c04f8dfa6","originalAuthorName":"李兵"}],"doi":"10.3969/j.issn.1004-0676.2006.01.014","fpage":"69","id":"8f2b3875-b329-4f2a-9205-6c9b302cdc6a","issue":"1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"9cad2058-6d18-4a28-933d-e44a13540bf6","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"51071e09-a3b1-4979-848b-3d1d97135cf5","keyword":"催化化学","originalKeyword":"催化化学"},{"id":"513498f1-572d-4f6f-a301-85f0522b258b","keyword":"汽车尾气Pd催化剂","originalKeyword":"汽车尾气Pd催化剂"},{"id":"d0f99c86-1fcf-4301-8989-0715418433ee","keyword":"涂层Al2O3","originalKeyword":"涂层Al2O3"},{"id":"780ed7c4-e779-42cb-bc68-5428a541f6a6","keyword":"烧结","originalKeyword":"烧结"}],"language":"zh","publisherId":"gjs200601014","title":"汽车尾气净化Pd催化剂的研究现状、进展及展望","volume":"27","year":"2006"},{"abstractinfo":"采用浸渍法制备了负载在竹炭(BC)、柱状煤质炭(CYC)、果壳炭(FC)、木质炭(WC)和椰壳炭(CC)上的5种Ni基催化剂,考察了镍分散度、还原性能及催化乙醇气相羰化制丙酸的性能.用N2物理吸附法、X射线光电子能谱和程序升温脱附等方法研究了活性炭的孔结构特性、表面含氧官能团种类和数量.结果表明,Ni/CC的羰化活性最高,乙醇转化率和丙酸选择性分别为96.1%和93.2%,而Ni/BC的羰化活性最低,乙醇转化率和丙酸选择性分别为63.0%和32.7%.催化剂催化羰化性能与其载体活性炭材料的性质密切相关.","authors":[{"authorName":"","id":"4f236c4b-e0bb-4d55-8ddb-f2cd42bbded6","originalAuthorName":"章青"},{"authorName":"王会芳","id":"46f2214a-630b-4248-bc28-29660a72cfb6","originalAuthorName":"王会芳"},{"authorName":"孙果宋","id":"e7ea7466-5525-4889-ac13-28526f830237","originalAuthorName":"孙果宋"},{"authorName":"黄科林","id":"70b38eb7-ba1e-40b6-a47a-add9dd80d4a4","originalAuthorName":"黄科林"},{"authorName":"方维平","id":"96c60a8c-79f1-4535-8d54-abf9cf848d83","originalAuthorName":"方维平"},{"authorName":"杨意泉","id":"0b17e676-8204-4eee-b6f7-704af8eb6a0d","originalAuthorName":"杨意泉"}],"doi":"","fpage":"555","id":"df9d3a9d-8cb7-40be-a336-2daef26f5b8f","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"e3887f74-4e60-4853-b6cd-c18196dff339","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"ece3e7a7-1ff6-4cc5-928f-0af502951965","keyword":"乙醇","originalKeyword":"乙醇"},{"id":"723c5f89-b84f-4927-a2c1-cfb91e0c737a","keyword":"气相羰化","originalKeyword":"气相羰化"},{"id":"d5a922cd-ef5a-49d8-84f3-38231928d1d1","keyword":"丙酸","originalKeyword":"丙酸"},{"id":"1eb8c042-561c-4fa9-9b46-da6ef2f8b5ab","keyword":"表面官能团","originalKeyword":"表面官能团"}],"language":"zh","publisherId":"cuihuaxb200906015","title":"活性炭材料对镍基催化剂乙醇气相羰化性能的影响","volume":"30","year":"2009"},{"abstractinfo":"采用等体积浸渍法制备了分别以乙酰丙酮镍、氯化镍、硝酸镍和醋酸镍为前驱体负载在活性炭上的4种催化剂.用BET、金属分散度、H2程序升温还原(H2-TPR)、CO-程序升温脱附(CO-TPD)和XRD等测试技术研究了4种催化剂的结构特点和乙醇气相羰化活性.结果表明,以醋酸镍制备的Ni/C催化剂的羰化活性最高,乙醇转化率和丙酸选择性分别为96.1%和95.7%,而以乙酰丙酮镍制备的Ni/C催化剂的羰化活性最低,乙醇转化率和丙酸选择性分别为68.9%和27.1%.这种活性的差异与镍盐前驱体和活性炭之间的相互作用强弱有着密切关系.醋酸镍组分与活性炭之间的相互作用较强,浸渍组分易在活性炭表面充分吸附,活性中心Ni0在240~340 ℃温度范围内对CO吸附量最大,还原后金属镍的分散度较好且晶粒较小.","authors":[{"authorName":"","id":"634c4b46-6e0e-4c39-bf5f-172d0fd96d7c","originalAuthorName":"章青"},{"authorName":"王会芳","id":"90aeac9a-c147-4e13-8b07-17db938919f8","originalAuthorName":"王会芳"},{"authorName":"孙果宋","id":"f00a8240-f63b-400f-b485-a9dee48098ff","originalAuthorName":"孙果宋"},{"authorName":"黄科林","id":"a32f5003-2477-4c95-8618-5b2f19f50667","originalAuthorName":"黄科林"},{"authorName":"方维平","id":"a280db77-9e5f-47b4-b85e-578806321eb6","originalAuthorName":"方维平"},{"authorName":"杨意泉","id":"b6ced0b5-4c9b-41c5-92ec-4befe600cebb","originalAuthorName":"杨意泉"}],"doi":"10.3969/j.issn.1000-0518.2009.08.021","fpage":"976","id":"34fde957-59fd-426a-89c2-0f0536cd9632","issue":"8","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"7527fab7-f948-4c79-b3c2-05298b6c9daa","keyword":"乙醇","originalKeyword":"乙醇"},{"id":"53a97dfc-c0d2-4fdb-9885-8fbbb9056c32","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"ae88f25a-09ef-47fd-84b8-4afe84ce5a8a","keyword":"镍盐前驱体","originalKeyword":"镍盐前驱体"},{"id":"790d4608-604e-4cb4-9838-8509d5d3560a","keyword":"气相羰化","originalKeyword":"气相羰化"},{"id":"aab88ca6-11a5-4f0e-89a4-23aff8f3b9e7","keyword":"丙酸","originalKeyword":"丙酸"}],"language":"zh","publisherId":"yyhx200908021","title":"镍盐前驱体对Ni/C催化剂乙醇气相羰化活性的影响","volume":"26","year":"2009"},{"abstractinfo":"基于镶嵌原子法描述金属晶体原子间作用,分别以α-Fe和Ni为例,采用分子动力学方法研究了面心立方晶格(FCC)和体心立方晶格(BCC)纳米金属丝单向拉伸过程的力学行为和性能.分析了纳米尺度下两种典型金属丝的拉伸变形破坏过程和纳米晶体破坏过程中的本构关系,讨论了自由表面对纳米材料力学行为和性能的影响.研究得到两种纳米金属丝的弹性模量、屈服强度和断裂强度.BCC金属纳米丝由于比表面积更大,拉伸屈服阶段比FCC金属更明显,初始应力更高,表面效应对初始弹性模量的软化作用更大.","authors":[{"authorName":"黄丹","id":"4532da28-c92e-41be-877f-388126ae7dcb","originalAuthorName":"黄丹"},{"authorName":"","id":"d17438d8-d579-48c0-9094-05a3084ef413","originalAuthorName":"章青"},{"authorName":"郭乙木","id":"37625ea4-0552-4152-a6ee-32397af509c7","originalAuthorName":"郭乙木"}],"doi":"10.3969/j.issn.1004-244X.2006.05.004","fpage":"12","id":"70571a94-8e5c-4705-84c0-fdeb1c0ae832","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"4d2277e0-fef7-4e3a-b87e-39f531006ffb","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"ad131cfe-72c4-4fad-88c1-edc3e6cb6da2","keyword":"纳米金属丝","originalKeyword":"纳米金属丝"},{"id":"c46a1de2-1256-435a-98d3-b958c50436cb","keyword":"单向拉伸","originalKeyword":"单向拉伸"},{"id":"89d07e6c-c180-45ba-b6b5-7858aca87dc6","keyword":"力学行为","originalKeyword":"力学行为"},{"id":"441bf13d-5dee-46ec-8896-651b853c1e83","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"bqclkxygc200605004","title":"α-Fe和Ni纳米丝单向拉伸过程的分子动力学模拟","volume":"29","year":"2006"},{"abstractinfo":"对于含平行币状裂纹材料表现出来的横观各向同性,引入Walpole's基来表示和计算.通过构造能量密度支函数来定义复合材料的宏观应力,在非线性均质化方案中采用了基于能量原理的修正割线法,考虑了静水压力对偏应变的影响.研究了含微裂纹材料弹性刚度张量的三种解法:稀疏解法、MT法和PCW法,获得了含平行币状裂纹材料具有Drucker-Prager型式的宏观强度准则,研究结果表明,材料的弹性模量比和宏观摩擦系数随着裂纹的体积分数增加而减小,并且裂纹外形比越小,稀疏解法、MT法和PCW法对材料的弹性模量比和宏观摩擦系数预测曲线差异越大.","authors":[{"authorName":"肖建强","id":"720c0dfd-bf8a-41eb-8a5e-bc3f598b29c1","originalAuthorName":"肖建强"},{"authorName":"","id":"f548dbbb-e9b7-4fb2-b8cb-20d352fa700d","originalAuthorName":"章青"},{"authorName":"夏晓舟","id":"42de04cb-f963-4322-ba57-dc2c3908d783","originalAuthorName":"夏晓舟"}],"doi":"","fpage":"226","id":"7f6b40c9-4cf2-4ba6-a50a-2163e8e57f0c","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"a5b767b4-b855-4fa1-bee2-baa19e8ab2bd","keyword":"细观力学","originalKeyword":"细观力学"},{"id":"537db924-60bb-4a37-b551-0434a6dfe18b","keyword":"微裂纹","originalKeyword":"微裂纹"},{"id":"75ad2b5a-dd5a-41aa-b42d-94ba65bf580e","keyword":"支函数","originalKeyword":"支函数"},{"id":"2f2352a7-ac1f-40a1-9676-43109ab779d8","keyword":"横观","originalKeyword":"横观"},{"id":"839027fa-54fc-430b-bcce-2f7fb561669d","keyword":"Walpose's基","originalKeyword":"Walpose's基"}],"language":"zh","publisherId":"fhclxb201302035","title":"含平行币状裂纹复合材料的强度准则","volume":"30","year":"2013"},{"abstractinfo":"纳米多孔金属是近年来发展起来的一类具有纳米级双连续孔洞和高表面积的新型功能材料,具备如化学性能、力学性能、表面拉曼散射性能等多方面的优异特性,在催化、传感、新能源、生物医学等诸多领域拥有广阔的应用前景。围绕纳米多孔金属的制备、力学性能和尺度特性等,展开细述了相关的研究工作,并重点针对力学性能方面的研究进展,如尺度方程、破坏机理、表面效应和表面应力,以及脱合金制备方法和制备过程中的力学问题进行了讨论,并对将来的研究方向进行了展望。","authors":[{"authorName":"郭林凯","id":"f34ba189-5871-4ad3-ba86-52b8f2180815","originalAuthorName":"郭林凯"},{"authorName":"王磊","id":"388d8287-00f1-497f-bf91-034055989e33","originalAuthorName":"王磊"},{"authorName":"","id":"db59378d-9061-4ccb-909f-d64fc4e9c7c5","originalAuthorName":"章青"}],"doi":"10.11896/j.issn.1005-023X.2017.01.013","fpage":"97","id":"c4b21dae-49d2-4d31-8c21-84d593c7b054","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"62526cda-6d9b-4a13-ab9d-b432c982826e","keyword":"纳米多孔金属","originalKeyword":"纳米多孔金属"},{"id":"21173b02-c1b3-4c32-bf92-61f4f8b621ee","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"410702cf-a6e6-43ab-bd4e-6d619a44ea82","keyword":"脱合金","originalKeyword":"脱合金"},{"id":"ea409e9b-fe43-4222-9abc-f324df6c2608","keyword":"尺度方程","originalKeyword":"尺度方程"},{"id":"c735a226-9785-4902-a6a8-920524efcff0","keyword":"表面应力","originalKeyword":"表面应力"}],"language":"zh","publisherId":"cldb201701014","title":"纳米多孔金属力学性能的若干研究进展?","volume":"31","year":"2017"},{"abstractinfo":"介绍了钢第二炼钢厂实现炼钢-连铸全工序负能炼钢的现状和在生产中为降低能耗所采取的技术措施,并对炼钢工艺流程和负能炼钢工序构成进行了改进.","authors":[{"authorName":"刘树海","id":"0a06c2ad-7798-4b06-9b2d-0aa009a6e5a3","originalAuthorName":"刘树海"},{"authorName":"牛锡云","id":"a30e4136-58d8-4865-9500-a3ceae2dbfac","originalAuthorName":"牛锡云"},{"authorName":"朱珉","id":"73d115d8-2175-4e8f-9ee8-99e5fff01bda","originalAuthorName":"朱珉"}],"doi":"","fpage":"14","id":"dd0cc474-c0a9-4a8a-b6a3-36b366d6d288","issue":"1","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"b5ffd402-0132-4db3-b764-908b0519149a","keyword":"转炉","originalKeyword":"转炉"},{"id":"c0092434-c8cf-4aff-ab31-72cd465a1172","keyword":"工艺优化","originalKeyword":"工艺优化"},{"id":"310903c1-3356-4340-8c42-dc86c7bc284b","keyword":"负能炼钢","originalKeyword":"负能炼钢"}],"language":"zh","publisherId":"lz200801005","title":"钢负能炼钢概述","volume":"","year":"2008"},{"abstractinfo":"以1-羟基-N-[4-(2,4--特戊基-苯氧基-丁基)-2-萘甲酰胺为母体,以2,5-二巯基-1,3,4-噻二唑为吸附基团,分别以1-甲酰基-2-(4-氨基)苯肼,1-乙酰基-2-(4-氨基)苯肼和1-三氟乙酰基-2-(4-氨基)苯肼为增强基团合成了3种DAR成色剂.结构经IR、1H NMR、MS及元素分析等检测确证.","authors":[{"authorName":"刘玉婷","id":"caa97f67-8f05-4c9c-8803-57e40b3fc206","originalAuthorName":"刘玉婷"},{"authorName":"吕峰","id":"37e69a53-c80b-46e7-a23c-18207a6f03df","originalAuthorName":"吕峰"},{"authorName":"邹竞","id":"8e449132-76d0-40d2-8e8e-67682e376c4c","originalAuthorName":"邹竞"},{"authorName":"张大德","id":"5196469c-c75d-464e-9281-0b253b6e1b39","originalAuthorName":"张大德"},{"authorName":"姚祖光","id":"7299efd3-5156-4877-af56-1c62bdc4c883","originalAuthorName":"姚祖光"}],"doi":"10.3969/j.issn.1000-0518.2004.06.016","fpage":"609","id":"32bea755-a47c-4bc3-be35-36deb4dbf8bf","issue":"6","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"747c9319-04a6-4f54-a730-3a1943717530","keyword":"DAR成色剂","originalKeyword":"DAR成色剂"},{"id":"2bb576f2-4aaf-425a-943b-8ac19757d32d","keyword":"合成","originalKeyword":"合成"}],"language":"zh","publisherId":"yyhx200406016","title":"DAR成色剂的合成","volume":"21","year":"2004"},{"abstractinfo":"分析钢小方坯连铸的现状及存在的问题,介绍高效连铸设备改造的方案和目标以及改造后的效果.","authors":[{"authorName":"吴晓文","id":"69f57e50-63a3-446b-bb68-8402dd1e3254","originalAuthorName":"吴晓文"}],"doi":"10.3969/j.issn.1005-4006.2001.06.006","fpage":"18","id":"4bb26ca7-20a7-4372-a578-41b56f6dae0e","issue":"6","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"6ae98429-35d9-4147-ac07-b8fbd62e9ede","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"lz200106006","title":"钢小方坯连铸高效改造","volume":"","year":"2001"}],"totalpage":7,"totalrecord":70}