欢迎登录材料期刊网

材料期刊网

高级检索

Molecular dynamics simulations have been performed to study the mechanical properties of armchair-type single-walled and multiple-walled carbon nanotubes under tensile loading with and without hydrogen storage. Advanced bond order potentials were used in the simulations. Hydrogen molecules stored inside or outside nanotubes reduced the fracture strength of nanotubes. During the deformation, some C-C bonds were broken and reconstructed. If hydrogen. molecules were around, hydrogen atoms would compete with the carbon atoms, to form the H-C bonds, which reduces the mechanical strength of nanotubes. Such detrimental effect of hydrogen is enhanced if the curvature of the tubes is increased, or if hydrogen is stored in a multiple-walled carbon nanotube.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%