欢迎登录材料期刊网

材料期刊网

高级检索

采用XRD和TG-DSC分析研究低品位钼精矿石灰氧化焙烧过程的反应机理,确定石灰法焙烧?酸浸提钼工艺的优化参数。热重分析表明:石灰法焙烧主要发生Ca(OH)2的分解、MoS2的氧化、MoO2的再氧化及钼酸盐的生成等反应,焙烧过程主要产生MoO2、MoO3、CaMoO4、CaSO4等物相。XRD分析表明:当温度高于600℃、反应时间大于90 min时,焙砂中低价态钼的衍射峰完全消失,此时焙砂主要物相为CaMoO4和CaSO4,辉钼矿被充分氧化;石灰焙烧适宜的条件为Ca(OH)2与钼精矿质量比1:1、焙烧温度650℃、焙烧时间90 min,焙烧过程硫的保留率可达91.49%。钼焙砂酸浸适宜的浸出温度为90℃、浸出时间为2 h、H2SO4浓度为70 g/L、液固比为5:1,此时钼浸出率可达99.12%,CaMoO4被完全溶出。

The mechanism of chemical reactions was studied on the oxidation of low grade molybdenum concentrate with addition of calcium oxide by the methods of XRD and TG-DSC, and the optimum conditions of calcium-based roasting and acid leaching were determined. The result of TG-DSC shows that the reactions are composed mainly of decomposition of Ca(OH)2, oxidization of MoS2, re-oxidization of MoO2 and the formation of molybdate. The products are MoO2, MoO3, CaMoO4 and CaSO4 in the process of oxidation roasting. The XRD result shows that the diffractions of low valence state molybdenum can not disappear completely until roasting temperature exceeds 600℃and roasting time is longer than 90 min. The main phases are CaMoO4 and CaSO4 in molybdenum calcine, and the molybdenite can be oxidized completely. The retaining ratio of sulfur can reach 91.49% under the conditions of mass ratio of Ca(OH)2 to molybdenum concentrate 1:1, roasting temperature 650℃and roasting time 90min. The test shows that the leaching rate of molybedenum can reach 99.12% under the suitable conditions of leaching temperature 90 ℃, leaching time 2 h, sulfuric acid 70 g/L, the ratio of liquid to solid 5:1.

参考文献

[1] 黄卉,陈福亮,姜艳,容会,朵云峰,杨志鸿.我国钼资源现状及钼的冶炼分析[J].云南冶金,2014(02):66-70.
[2] 2013年国际钼市场走势及近期估计[J].中国钼业,2014(03):51-58.
[3] 胡磊,肖连生,张贵清,曾理.从高杂质低品位钼焙砂中苏打高压浸出钼的试验研究[J].矿冶工程,2012(06):66-70.
[4] 杨洪英,俞娟,佟琳琳,罗文杰.低品位复杂钼精矿的提纯工艺[J].中国有色金属学报,2013(07):2012-2018.
[5] 张文钲.从低品位钼精矿或钼中间产品生产工业氧化钼、二钼酸铵和纯三氧化钼[J].中国钼业,2004(04):33-36.
[6] 张启修;赵秦生.钨钼冶金[M].北京:冶金工业出版社,2005:26-32.
[7] Manoj Kumar;T.R. Mankhand;D.S.R. Murthy .Refining of a low-grade molybdenite concentrate[J].Hydrometallurgy,2007(1/2):56-62.
[8] 彭建蓉;杨大锦;陈加希;阎江峰 .原生钼矿加压碱浸试验研究[J].稀有金属,2007,31(06):110-113.
[9] KETCHAM J .Pressure oxidation process for the production of molybdenum trioxide from molybdenite[P].United States Patent,US6149883,2000-11-21.
[10] VICLOR J .Pressure oxidation process for the production of molybdenum trioxide from molybdnite[P].US6149883,2000-11-21.
[11] Cao Zhan-fang;Zhong Hong;Liu Guang-yi .Electric-Oxidation Kinetics of Molybdenite Concentrate in Acidic NaCl Solution[J].The Canadian Journal of Chemical Engineering,2009(6):939-944.
[12] FU Jian-gang,ZHONG Hong,BU Xiang-ming,WANG Fu-li.Electro-oxidation process for molybdenum concentrates[J].中南工业大学学报(英文版),2005(02):134-139.
[13] 曹占芳,钟宏,姜涛,刘广义,王帅.德兴铜矿辉钼矿精矿的选择性电氧化浸出与分离过程[J].中国有色金属学报,2013(08):2290-2295.
[14] 符剑刚,钟宏,黄永平,卜向明.Mn3+/Mn2+间接电氧化法分解辉钼矿[J].中南大学学报(自然科学版),2004(05):797-801.
[15] WARREN I H;MOUNSEY D M .Factors influencing the selective leaching of molybdenum with sodium hypochlorite from copper/molybdenum sulphide minerals[J].HYDROMETALLURGY,1983,10(03):343-357.
[16] ANTONIJEVIC M M;PACOVIC N V .Investigation of molybdenite oxidation by sodium dichromate[J].Minerals Engineering,1992,5(02):223-233.
[17] ROMANO P;BLáZQUEZ M L;ALGUACIL F J;MU?OZ J A BALLESTER A GONZáLEZ F .Comparative study on the chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria[J].FEMS Microbilology Letters,2001,196(01):71-75.
[18] OLSON G J;CLARK T R .Bioleaching of molybdenite[J].HYDROMETALLURGY,2006,82(03):133-136.
[19] 向铁根.钼冶金[M].长沙:中南大学出版社,2002:1-20.
[20] 甘敏,范晓慧,张麟,姜涛,邱冠周,王勇,邓琼,陈许玲.低品位钼精矿氧化焙烧过程的反应行为[J].中国有色金属学报,2014(12):3115-3122.
[21] 俞娟,杨洪英,陈燕杰,范有静.低品位钼精矿的钼提取研究[J].东北大学学报:自然科学版,2011(08):1141-1144.
[22] 李飞,陈星宇,何利华,吴金玲.氢氧化钠分解不溶性钼酸盐的浸出热力学[J].中国有色金属学报,2014(11):2921-2927.
[23] 彭俊,王学文,王明玉,肖彩霞,施丽华.从镍钼矿中提取镍钼的工艺[J].中国有色金属学报,2012(02):553-559.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%