{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究不同调质工艺处理的石油套管用36Mn2V钢的0℃冲击性能.用金相显微镜、扫描电子显微镜和透射电子显微镜观察与分析钢的奥氏体晶粒大小、冲击断口形貌、钢中淬火未溶第二相以及回火碳化物的析出行为.结果表明,当回火温度一定,淬火温度在890℃时,淬火未溶第二相的数量较少而且奥氏体晶粒未过分长大,冲击功最大.当淬火温度一定,冲击功随着回火温度的升高而增大.回火温度较低时(500℃),钢中碳化物主要在晶界和马氏体板条界面上呈连续状析出,冲击功较低;回火温度较高时( 620℃),碳化物多在晶内析出而且铁素体呈等轴状,冲击性能较好.","authors":[{"authorName":"胡业晏","id":"411d4280-ce68-4e70-8233-c98e9753ce65","originalAuthorName":"胡业晏"},{"authorName":"鲁泽凡","id":"67a68673-c79b-471c-b024-976c1ba899fb","originalAuthorName":"鲁泽凡"},{"authorName":"黄飞","id":"a5f125d5-f32c-4e79-aa6a-3ab45bbd0c55","originalAuthorName":"黄飞"},{"authorName":"张毅","id":"7902cc9e-fc88-4368-a234-a1891195c1df","originalAuthorName":"张毅"},{"authorName":"殷利民","id":"91d90c18-b495-4c6e-9f54-0d9393896d57","originalAuthorName":"殷利民"},{"authorName":"李瑛","id":"4de84de7-9100-4aae-bacb-08c88d6d860a","originalAuthorName":"李瑛"}],"doi":"10.3969/j.issn.1001-7208.2011.05.007","fpage":"32","id":"996abe05-db15-40ff-b197-764d4c685955","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"dbebee56-2a62-4474-ada7-856974f7f8c3","keyword":"36Mn2V钢","originalKeyword":"36Mn2V钢"},{"id":"0dd0f402-1c8a-47f0-a1aa-d6744ffe534c","keyword":"石油套管","originalKeyword":"石油套管"},{"id":"a3110052-12e6-4af8-82bb-526d43b6c2a1","keyword":"冲击性能","originalKeyword":"冲击性能"},{"id":"e8106cca-b453-432e-b665-c8b8285d9ac5","keyword":"未溶第二相","originalKeyword":"未溶第二相"},{"id":"e6345738-b4f0-481a-ac2d-87bedb6f0ccb","keyword":"碳化物","originalKeyword":"碳化物"}],"language":"zh","publisherId":"shjs201105007","title":"调质工艺对石油套管用36Mn2V钢冲击性能的影响","volume":"33","year":"2011"},{"abstractinfo":"高韧性管线钢主要用于制造石油和天然气输送管,这类钢采用控轧控冷工艺生产,具有良好的综合性能.文中对X60管线钢中第二相粒子随加热温度升高在钢中的固溶情况进行了定量分析,测试了奥氏体晶粒粗化温度并对控轧控冷工艺中加热温度的选择进行了探讨.","authors":[{"authorName":"杨秀亮","id":"3ac6b94e-d2d6-4f43-925c-972255ae12c0","originalAuthorName":"杨秀亮"}],"doi":"10.3969/j.issn.1004-7638.2002.02.003","fpage":"11","id":"127a50b2-5750-4d0b-9e99-284152f2ca10","issue":"2","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"3976fe11-398b-4a8c-abaa-64f7c23ef5e8","keyword":"管线钢","originalKeyword":"管线钢"},{"id":"6e3df428-919c-4b28-81ed-fe940593dc27","keyword":"加热","originalKeyword":"加热"},{"id":"85f064a5-2211-4950-b10b-9dd8726437fe","keyword":"固溶","originalKeyword":"固溶"},{"id":"57d060fc-d969-46ae-bb1f-2315cf64f2d1","keyword":"晶粒尺寸","originalKeyword":"晶粒尺寸"}],"language":"zh","publisherId":"gtft200202003","title":"加热温度对管线钢第二相粒子固溶及晶粒长大的影响","volume":"23","year":"2002"},{"abstractinfo":"钢中第二相的合理控制对于提高钢铁材料的综合性能具有重要意义,而第二相控制的关键在于准确掌握第二相在铁基体中的固溶与析出行为。多元第二相平衡固溶的定量计算是第二相固溶与析出行为研究中的一个难点问题。本文以铌、钒、钛的微合金碳氮化物为例讨论了钢中三元第二相平衡固溶的热力学模型与计算方法及其在含钛渗碳齿轮钢产品开发中的应用。由于该方法求解计算量较大,我们在其基础上开发了一套可以自动计算和对比分析其中各个控制参量的通用分析计算软件,该软件可以有效应用于微合金钢的成分设计、生产工艺控制和钢种开发等,具有重要的工程应用价值。","authors":[{"authorName":"雍兮\t曹存根\t张利平","id":"e73e9ce6-3261-4e9d-8cec-12f91e904255","originalAuthorName":"雍兮\t曹存根\t张利平"}],"categoryName":"|","doi":"","fpage":"70","id":"03c81644-393d-49b9-8628-b0353e784ed0","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"4736a21e-c9d3-44de-8298-6ab935cee86e","keyword":"固溶析出;三元第二相;铁基体;平衡固溶度","originalKeyword":"固溶析出;三元第二相;铁基体;平衡固溶度"}],"language":"zh","publisherId":"0449-749X_2010_3_18","title":"三元第二相平衡固溶的计算方法及其工程应用","volume":"45","year":"2010"},{"abstractinfo":"钢中第二相的合理控制对于提高钢铁材料的综合性能具有重要意义,而第二相控制的关键在于准确掌握第二相在铁基体中的固溶与析出行为.多元第二相平衡固溶的定量计算是第二相固溶与析出行为研究中的一个难点问题.以铌、钒、钛的微合金碳氮化物为例讨论了钢中三元第二相平衡同溶的热力学模型与计算方法及其在含钛渗碳齿轮钢产品开发中的应用.由于该方法求解计算量较大,在其基础上开发了一套可以自动计算和对比分析其中各个控制参量的通用分析计算软件,该软件可以有效应用于微合金钢的成分设计、生产工艺控制和钢种开发等,具有重要的工程应用价值.","authors":[{"authorName":"雍兮","id":"57fc4fa2-36ed-4199-b990-1075d822bd8b","originalAuthorName":"雍兮"},{"authorName":"曹存根","id":"c19f1754-4c09-4eab-9ddb-00326cec0f78","originalAuthorName":"曹存根"},{"authorName":"张利平","id":"929e8ec5-221d-48c6-be0f-eda74bc519bc","originalAuthorName":"张利平"}],"doi":"","fpage":"70","id":"f4ea823e-e155-4a5f-8fea-7248a3d9cd3e","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"247cc295-9348-40bd-99de-f89f3414f71a","keyword":"固溶析出","originalKeyword":"固溶析出"},{"id":"5204ab50-0652-4843-8ffc-0ccad46162c4","keyword":"三元第二相","originalKeyword":"三元第二相"},{"id":"6d99c7ee-1852-4268-9087-75c63f975e98","keyword":"铁基体","originalKeyword":"铁基体"},{"id":"03315c43-b48c-4020-8a48-97870cae1d2b","keyword":"平衡固溶度","originalKeyword":"平衡固溶度"}],"language":"zh","publisherId":"gt201003014","title":"三元第二相平衡固溶的计算方法及其工程应用","volume":"45","year":"2010"},{"abstractinfo":"利用平衡态分析方法,研究了析出物形成元素含量波动对Ti-IF钢高温固溶规律的影响,发现了一些新现象,为今后生产中控制第二相粒子形成元素的固溶含量提供理论参考.","authors":[{"authorName":"焦书军","id":"35eda043-2eae-4bbd-a4de-ce8719e517ef","originalAuthorName":"焦书军"},{"authorName":"茹铮","id":"aa203813-1434-44b9-874b-148d8103168e","originalAuthorName":"茹铮"},{"authorName":"王先进","id":"14b87106-1a0b-423b-8eb7-ef641f743757","originalAuthorName":"王先进"},{"authorName":"高建辉","id":"c4b7d0ce-9a5a-4552-bcab-249008aa2593","originalAuthorName":"高建辉"}],"doi":"","fpage":"0","id":"6f70dee6-59ef-4c3f-8279-0d11c76229a0","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"5efd9377-d52b-4599-99bf-632f6ca61df0","keyword":"Ti-IF钢","originalKeyword":"Ti-IF钢"},{"id":"207fa1a3-2d65-4ec9-a58e-c3939446defb","keyword":"第二相粒子","originalKeyword":"第二相粒子"},{"id":"c562c0cb-d336-4f90-9b09-278169e0a565","keyword":"平衡态固溶","originalKeyword":"平衡态固溶"}],"language":"zh","publisherId":"gt199808012","title":"第二相粒子形成元素含量波动对Ti-IF钢平衡固溶规律的影响","volume":"33","year":"1998"},{"abstractinfo":"利用光学显微镜等研究了 SA5 1 6Gr60N 容器钢在不同奥氏体化温度下奥氏体晶粒尺寸的长大规律以及微合金元素 Nb、Ti、V 的固溶规律.研究结果表明,随着奥氏体化温度的升高,微合金元素 Nb、Ti、V 的固溶量逐渐增加;990~1 050 ℃时,原始奥氏体晶粒尺寸增加缓慢,晶粒细小均匀;1 070 ℃时晶粒出现异常长大现象,随后部分奥氏体晶粒急剧长大,不均匀性越来越明显;1 1 70~1 210 ℃时,奥氏体晶粒尺寸均匀化.","authors":[{"authorName":"郭海滨","id":"41f74cac-a935-4e67-a854-fc0f584daa23","originalAuthorName":"郭海滨"},{"authorName":"左秀荣","id":"9893ccaa-a443-4d3a-b7cd-452f2efccf8d","originalAuthorName":"左秀荣"},{"authorName":"张新理","id":"fef2c5f3-ac8e-45bc-8f38-1bca21d43f3a","originalAuthorName":"张新理"},{"authorName":"姬颍伦","id":"0c53a8f7-7596-4efc-8741-a030a813e079","originalAuthorName":"姬颍伦"},{"authorName":"洪良","id":"4a647de0-2c96-43fb-a56c-f08bcdf89550","originalAuthorName":"洪良"}],"doi":"10.13228/j.boyuan.issn1001-0963.20150218","fpage":"63","id":"08fbe5a4-7c13-4e70-bfab-2dca3c441c53","issue":"2","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"a7975609-3986-4404-ae16-736882ff59c6","keyword":"容器钢","originalKeyword":"容器钢"},{"id":"ad699d1f-cf31-412e-8533-8cc3966cfb0d","keyword":"奥氏体晶粒尺寸","originalKeyword":"奥氏体晶粒尺寸"},{"id":"9d29eb2a-e872-42cc-b061-b0224ba67297","keyword":"微合金元素","originalKeyword":"微合金元素"},{"id":"a4a18d87-2d21-4564-a57e-fc111f61d102","keyword":"奥氏体化","originalKeyword":"奥氏体化"}],"language":"zh","publisherId":"gtyjxb201602012","title":"奥氏体化温度对奥氏体晶粒度及第二相固溶的影响","volume":"28","year":"2016"},{"abstractinfo":"通过热力学计算和萃取复型分析技术,对高Ti含Nb钢中第二相粒子在不同加热温度下的固溶情况和奥氏体晶粒的长大规律进行了研究.结果表明:再加热温度低于1 180℃时,钢中Nb、Ti含量随温度升高显著增加.Nb、Ti固溶量分别在1 210℃和1 180℃以上趋于稳定;再加热温度在800~1 100℃时,以尺寸小于30 nm、分布较均匀的小粒子为主,呈球形,奥氏体晶粒尺寸在30μm以下.再加热温度在1 180~1 210℃时,第二相粒子数量减少,尺寸多在100~200 nm之间,形态多为立方形和球形,奥氏体晶粒尺寸略微增加.随着再加热温度的进一步升高,析出粒子数量迅速下降,尺寸多为大于200 nm的方形粒子,此时奥氏体晶粒迅速长大至100 μm以上;析出粒子组成均为Nb、Ti复合的碳氮化物,其Nb/Ti原子比随温度升高而降低;试验钢的晶粒粗化温度为1 210℃,确定实际加热温度为1 180~1 210℃.","authors":[{"authorName":"杨颖","id":"606412d2-5d5c-4ecc-9e62-89c3790727bc","originalAuthorName":"杨颖"},{"authorName":"侯华兴","id":"a967dbe8-c678-4f5a-a966-6f1e14bf7605","originalAuthorName":"侯华兴"},{"authorName":"马玉璞","id":"47b3fc9e-15eb-4f5a-8c0c-d839d408ff50","originalAuthorName":"马玉璞"},{"authorName":"谷春阳","id":"0d2f76b5-94db-4453-9438-6c830ec6fdc5","originalAuthorName":"谷春阳"}],"doi":"","fpage":"38","id":"00d8c08b-23c2-45e3-9b01-999b869e9101","issue":"7","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"5d1c6349-a3da-4253-8e34-f6e24e06aad5","keyword":"再加热温度","originalKeyword":"再加热温度"},{"id":"6e19d601-886e-4cae-92be-759bddc8ef9a","keyword":"第二相粒子","originalKeyword":"第二相粒子"},{"id":"480df2f3-5beb-4611-8337-31313749e00f","keyword":"奥氏体晶粒尺寸","originalKeyword":"奥氏体晶粒尺寸"}],"language":"zh","publisherId":"gtyjxb200807010","title":"再加热温度对含Nb,Ti钢第二相粒子固溶及晶粒长大的影响","volume":"20","year":"2008"},{"abstractinfo":"通过热力学计算和萃取复型分析技术,对高Ti含Nb钢中第二相粒子在不同加热温度下的固溶情况和奥氏体晶粒的长大规律进行了研究。结果表明:再加热温度低于1 180 ℃时,钢中Nb、Ti含量随温度升高显著增加。Nb、Ti固溶量分别在1 210 ℃和1 180 ℃以上趋于稳定;再加热温度在800~1 100 ℃时,以尺寸小于30 nm、分布较均匀的小粒子为主,呈球形,奥氏体晶粒尺寸在30 μm以下。再加热温度在1 180~1 210 ℃时,第二相粒子数量减少,尺寸多在100~200 nm之间,形态多为立方形和球形,奥氏体晶粒尺寸略微增加。随着再加热温度的进一步升高,析出粒子数量迅速下降,尺寸多为大于200 nm的方形粒子,此时奥氏体晶粒迅速长大至100 μm以上;析出粒子组成均为Nb、Ti复合的碳氮化物,其Nb/Ti原子比随温度升高而降低;试验钢的晶粒粗化温度为1 210 ℃,确定实际加热温度为1 180~1 210 ℃。","authors":[{"authorName":"杨颖","id":"4b17aab7-04ad-40b4-9fe0-c1d76fa2a7fb","originalAuthorName":"杨颖"},{"authorName":"侯华兴","id":"95a96dcf-43cb-41ae-ae5d-52e8f3a82315","originalAuthorName":"侯华兴"},{"authorName":"马玉璞","id":"c74b70cd-8ea8-425b-8493-342dcb32f4c1","originalAuthorName":"马玉璞"},{"authorName":"谷春阳","id":"0158aa3f-395f-48eb-9a0d-088150dea085","originalAuthorName":"谷春阳"}],"categoryName":"|","doi":"","fpage":"38","id":"1aac2c95-3831-4fd4-9c69-6c00f6488bc1","issue":"7","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"0c2dbf1c-1305-4ceb-9faa-1b7758a6102d","keyword":"再加热温度;第二相粒子;奥氏体晶粒尺寸","originalKeyword":"再加热温度;第二相粒子;奥氏体晶粒尺寸"}],"language":"zh","publisherId":"1001-0963_2008_7_12","title":"再加热温度对含Nb,Ti钢第二相粒子固溶及晶粒长大的影响","volume":"20","year":"2008"},{"abstractinfo":"用透射电子显微镜研究了系列微Ti钢中焊接热模拟冷却期间第二相粒子尺寸分布参数与试样成分(钛和铌含量)、冷却时间t8/5以及冲击韧性的关系.试验结果表明,钢中细小弥散的第二相粒子对冲击韧性的改善具有重要的作用;焊后冷却期间,高温未溶的细小第二相粒子发生了溶解、长大和析出,皆与试样成分及冷却时间有关.Ti-Nb钢中的第二相粒子(Ti,Nb)N的稳定性不如Ti钢中的TiN.Ti、Nb复合微合金化对焊后韧性的改善作用不如仅用微Ti合金化的钢.","authors":[{"authorName":"尹桂全","id":"40e1394b-d82a-47c1-9ede-b48e4bbb0b67","originalAuthorName":"尹桂全"},{"authorName":"张纯明","id":"b61515ef-3636-466f-97e1-6d0b482e9335","originalAuthorName":"张纯明"},{"authorName":"刘开升","id":"59753d83-1341-480a-826a-a5ab24249b50","originalAuthorName":"刘开升"}],"doi":"","fpage":"53","id":"bbcc7192-1ffe-40af-9626-a02df1d73174","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"8f740cdc-f42d-464d-8728-bab2a4fd9b31","keyword":"微Ti-Nb钢","originalKeyword":"微Ti-Nb钢"},{"id":"24a7e52e-9c0b-4cd6-ab35-55218717490b","keyword":"焊接","originalKeyword":"焊接"},{"id":"ef7a927d-52de-4cf8-a9b6-9b1df97bde67","keyword":"冷却时间","originalKeyword":"冷却时间"},{"id":"a07dc7a0-737f-408f-8a20-851d588ec444","keyword":"第二相粒子","originalKeyword":"第二相粒子"},{"id":"2cd5713b-d95b-4864-ba52-309e3c714ae0","keyword":"冲击韧性","originalKeyword":"冲击韧性"}],"language":"zh","publisherId":"gt200204014","title":"微Ti钢焊后冷却过程中的第二相粒子","volume":"37","year":"2002"},{"abstractinfo":"归纳总结了本课题组近几年来在几种典型的先进金属材料(高性能钢铁材料、高熵合金及块体非晶合金)中应用第二相强化机制的研究工作. 研究发现, 通过调控第二相与基体组织的界面特性和性能匹配, 可以有效调控第二相的尺寸、体积比及形貌等特征, 从而大幅度提高这些材料的综合力学性能.","authors":[{"authorName":"吕昭平","id":"d49cf100-cd69-43bc-8750-951f2e80fc13","originalAuthorName":"吕昭平"},{"authorName":"蒋虽合","id":"b567c79c-b4c2-44a4-a8a7-192e31ca7b50","originalAuthorName":"蒋虽合"},{"authorName":"何骏阳","id":"221597ec-0f6d-4a29-ac93-82e79b8f5c16","originalAuthorName":"何骏阳"},{"authorName":"周捷","id":"daff5ed5-fbec-42a1-a420-57f346e128e8","originalAuthorName":"周捷"},{"authorName":"宋温丽","id":"c8211983-0c13-43ee-917c-54bf6a4149b7","originalAuthorName":"宋温丽"},{"authorName":"吴渊","id":"b695da9c-7e7f-490e-b0f8-e0a67b714662","originalAuthorName":"吴渊"},{"authorName":"王辉","id":"3e670c14-b999-410c-a508-ba2f60bd2ba8","originalAuthorName":"王辉"},{"authorName":"刘雄军","id":"ffa87238-6f7d-49d1-936e-939720d3f3bd","originalAuthorName":"刘雄军"}],"doi":"10.11900/0412.1961.2016.00383","fpage":"1183","id":"def8945e-b474-4b3f-888a-e83e889ae01d","issue":"10","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1dfe6d1d-2a5d-4b9f-83f3-d57870c89c85","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"1109080c-8097-44fe-bd84-c0eb64afd476","keyword":"第二相强化","originalKeyword":"第二相强化"},{"id":"31efaf44-8021-4e50-a820-70911c0ec44d","keyword":"相界面","originalKeyword":"相界面"},{"id":"caa0c2ce-b2c2-4cbf-bcb0-d6c8d10f58d0","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"0412-1961(2016)10-1183-16","title":"先进金属材料的第二相强化","volume":"52","year":"2016"}],"totalpage":6664,"totalrecord":66634}