欢迎登录材料期刊网

材料期刊网

高级检索

The homogeneous plastic flow in bulk metallic glasses (BMGs) must be elucidated by an appropriate atomistic mechanism. It is proposed that a so-called concordant shifting model, based on rearrangements of five-atom subclusters, can describe the plastic strain behaviour of BMGs in a temperature range from room temperature to the supercooled liquid region. To confirm the effectiveness of the atomic concordant shifting model, a comparative investigation between the vacancy/atom model and the concordant shifting model is carried out based on the estimation of the strain rate deduced from two models. Our findings suggest that the atomic concordant shifting model rather than the vacancy/atom exchange model can well predict the large strain rate in the superplasticity of BMGs.

参考文献

[1] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55,4067 (2007)
[2] Y. Kawamura, T. Nakamura, A. Inoue, Scr. Mater. 39, 301 (1998)
[3] W.J. Kim, D.S. Ma, H.G. Jeong, Scr. Mater. 39, 1067 (2003)
[4] J. Lu, G. Ravichandran, W.L. Johnson, Acta Mater. 51, 3429 (2003)
[5] B. Gun, K.J. Laws, M. Ferry, J. Non-Cryst. Solids 352, 3896 (2006)
[6] J. Shen, G. Wang, J.F. Sun, Z.H. Stachurski, C. Yan, L. Ye, B.D.Zhou, Intermtallics 13, 79 (2005)
[7] G. Wang, I. Jackson, J.D. Fitz Gerald, J. Shen, Z.H. Stachurski,J. Non-Cryst. Solids 354, 1575 (2008)
[8] G. Wang, J. Shen, J.F. Sun, Y.J. Huang, J. Zou, Z.P. Lu, Z.H.Stachurski, B.D. Zhou, J. Non-Cryst. Solids 351, 209 (2005)
[9] Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H.Wang, Science 315, 1835 (2007)
[10] R.C. Giffkins, Scr. Metall. 7, 27 (1973)
[11] J.W. Edington, K.N. Melton, C.P. Cutler, Prog. Mater Sci. 21, 61 (1976)
[12] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, Cambridge, 1997),p. 240
[13] V.A. Levashov, J.R. Morris, T. Egami, Phys. Rev. Lett. 106,115703 (2011)
[14] F. Spaepen, Acta Metall. 25, 407 (1977)
[15] H. Nakajima, T. Kojima, K. Nonaka, T. Zhang, A. Inoue, N.Nishiyama, Mater. Res. Soc. Symp. Proc. 644, L2.2.1 (2001)
[16] H. Eyring, J. Chem. Phys. 4, 283 (1936)
[17] C.Y. Lee, T.R. Welberry, Z.H. Stachurski, Acta Mater. 58, 615 (2010)
[18] J.D. Eshelby, Proc. R. Soc. A 241, 376 (1957)
[19] A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu,E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, A. Kvick,Acta Mater. 53, 1611 (2005)
[20] R. Ekambaram, P. Thamburaja, N. Nikabdullah, Mech. Mater.40, 487 (2008)
[21] M. Heggen, F. Spaepen, M. Feuerbacher, J. Appl. Phys. 97,033506 (2005)
[22] J.C. Ye, J. Lu, C.T. Liu, Q. Wang, Y. Yang, Nat. Mater. 9, 619 (2010)
[23] A.S. Argon, Acta Metall. 27, 47 (1979)
[24] P. Thamburaja, N. Nikabdullah, Scr. Mater. 65, 751 (2011)
[25] G. Wang, N. Mattern, J. Bednarcˇı´k, R. Li, B. Zhang, J. Eckert,Acta Mater. 60, 3074 (2012)
[26] K. Trachenko, V.V. Brazhkin, J. Phys.: Condens. Matter 21,425104 (2009)
[27] W. Dmowski, T. Iwashita, C.P. Chuang, J. Almer, T. Egami,Phys. Rev. Lett. 105, 205502 (2010)
[28] Z.Y. Liu, G. Wang, K.C. Chan, J.L. Ren, X.L. Bian, Y.J. Huang,X.H. Xu, D.S. Zhang, Y.L. Gao, Q.J. Zhai, J. Appl. Phys. 114,033520 (2013)
[29] Z. Wang, B.A. Sun, H.Y. Bai, W.H. Wang, Nat. Commun. 5,5823 (2014)
[30] B.A. Sun, Z.Y. Liu, Y. Yang, C.T. Liu, Appl. Phys. Lett. 105,091904 (2014)
[31] Q. Wang, S.T. Zhang, Y. Yang, Y.D. Dong, C.T. Liu, J. Lu, Nat.Commun. 6, 7876 (2015)
[32] B.A. Sun, W.H. Wang, Prog. Mater Sci. 74, 211 (2015)G. Wang, Z. H. Stachurski: Acta Metall. Sin. (Engl. Lett.), 2016, 29(2), 134-139 139
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%