欢迎登录材料期刊网

材料期刊网

高级检索

计算方解石6个晶面和萤石3个晶面的表面断裂键密度,借助各向异性的表面断裂键密度预测两种含钙矿物的常见暴露面,分析表面断裂键密度与表面能之间的关系,利用接触角实验研究两种矿物常见暴露面的润湿性.表面断裂键密度计算分析表明,(10-14)、(21-34)和(01-1s)面及(111)面分别是方解石和萤石最常见的暴露面;两种矿物表面断裂键密度与表面能之间存在线性关系,其相关系数R2分别为0.9613和0.9969.接触角测量实验表明,两种矿物常见暴露面和水作用后的润湿性与表面断裂键密度有关,表面断裂键密度越大,亲水性越强,接触角越小;和油酸钠作用后的润湿性与表面Ca活性质点密度及质点的空间分布有关.

Anisotropic surface broken bond densities of six different surfaces of calcite and three surfaces of fluorite were calculated.In terms of the calculated results,the commonly exposed surfaces of the two minerals were predicted and the relations between surface broken bonds densities and surface energies were analyzed.Then the anisotropic wettability of the commonly exposed surfaces was studied by means of contact angle measurement.The calculation results show that the (10(1)4),(21(3)4)and (01(1)8) surfaces for calcite and (111) for fluorite are the most commonly exposed surfaces and there is a good rectilinear relation between surface broken bond density and surface energy with correlation of determination (R2) of 0.9613 and 0.9969,respectively.The anisotropic wettability of different surfaces after immersing in distilled water and sodium oleate solutions at different concentrations can be explained by anisotropic surface broken bond densities and active Ca sites densities,respectively.

参考文献

[1] Gang Sun,Yan Fang,Qian Cong,Lu-quan Ren.Anisotropism of the Non-Smooth Surface of Butterfly Wing[J].仿生工程学报(英文版),2009(01):71-76.
[2] Zhao Y;Lu QH;Li M;Li X .Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface[J].Langmuir: The ACS Journal of Surfaces and Colloids,2007(11):6212-6217.
[3] Sommers AD;Jacobi AM .Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface[J].Journal of Micromechanics and Microengineering,2006(8):1571-1578.
[4] HENG J Y;BISMARCK A;WILLIAMS D R .Anisotropic surface chemistry of crystalline pharmaceutical solids[J].Pharmaceutical Science and Technology,2006,7(04):E1-E9.
[5] Pradip.;Rai B.;Rao TK.;Krishnamurthy S.;Vetrivel R.;Mielczarski J. Cases JM. .Molecular modeling of interactions of diphosphonic acid based surfactants with calcium minerals[J].Langmuir: The ACS Journal of Surfaces and Colloids,2002(3):932-940.
[6] WANG Pu;PAN Zhao-lu;WENG Ling-bao.Systematic mineralogy[M].北京:地质出版社,1987:355-357.
[7] LEEUW N H;PARKER S C .Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces[J].Journal of the Chemical Society,Faraday Transactions,1997,93(03):467-475.
[8] Pradip.;Rai B.;Rao TK.;Krishnamurthy S.;Vetrivel R.;Mielczarski J. Cases JM. .Molecular modeling of interactions of alkyl hydroxamates with calcium minerals[J].Journal of Colloid and Interface Science,2002(1):106-113.
[9] CHICHAGOV A V;BELONOZHKO A B;LOPATIN A L .Information-calculating system on crystal structure data of (nunerals)[J].Crystallography Reports,1990,35(03):610-616.
[10] R.J.Crawford;D.E.Mainwaring .The influence of surfactant adsorption on the surface characterisation of Australian coals[J].Fuel,2001(3):313-320.
[11] Timothy G.Cooper;Nora H.de Leeuw .A Computer Modeling Study of the Competitive Adsorption of Water and Organic Surfactants at Surfaces of the Mineral Scheelite[J].Langmuir: The ACS Journal of Surfaces and Colloids,2004(10):3984-3994.
[12] COOPER T G;LEEUW N H .A combined ab initio and atomistic simulation study of the surface and interfacial structures and energies of hydrated scheelite:Introducing CaWO4 potential model[J].Surface Science,2003,53(02):1159-1176.
[13] GIBBS J W.The collected works of J W Gibbs[M].New York:Longrnans,1928
[14] STIPP S L;HOCHELLA M F .Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED)[J].Geochimica et Cosmochimica Acta,1991,55(06):1723-1736.
[15] FOWKES F M .Attractive forces at interfaces[J].Industrial and Engineering Chemistry,1964,56(12):40-52.
[16] GENNES R .Surface energy[EB/OL].http://en.wikipedia.org/wiki/Surface_energy,2011-05-01.
[17] MOON K S;FUERSTENAU D W .Surface crystal chemistry in selective flotation of spodumene from other aluminosilicates[J].International Journal of Mineral Processing,2003,72(1-4):11-24.
[18] ANANTHAPADRNANABHAN K P;SOMASUNDARAN P.Oleate chemistry and hematite flotation[A].New York:Engineering Foundation,1981:207-227.
[19] REZAEI K A;HAMOUDA A A;DENOYEL R .Influence of sulfate ions on the internctlon between fatty acids and calcite surface[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,287(1-3):29-35.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%