欢迎登录材料期刊网

材料期刊网

高级检索

为了获得黄铁矿、白铁矿和磁黄铁矿的氧化机制,采用第一性原理方法研究氧分子与这三种矿物表面的作用。计算结果表明:氧分子在磁黄铁矿表面的吸附能最大,在白铁矿表面的吸附能次之,在黄铁矿表面的吸附能最小。氧分子在黄铁矿、白铁矿和磁黄铁矿表面都发生了解离。氧原子与黄铁矿、白铁矿和磁黄铁矿的表面原子具有不同的键合结构。由于白铁矿和磁黄铁矿表面与氧作用的原子数较多,因此,氧分子在白铁矿和磁黄铁矿表面的吸附能比在黄铁矿表面的吸附能大。磁黄铁矿表面相对较大的O—Fe键布局值导致氧分子在磁黄铁矿表面的吸附能比在白铁矿表面的吸附能大。

The interaction of O2 with pyrite, marcasite and pyrrhotite surfaces was studied using first-principle calculations to obtain the oxidization mechanisms of these minerals. The results show that the adsorption energy of O2 on pyrrhotite surface is the largest, followed by that on marcasite surface and then pyrite surface. O2 molecules adsorbed on pyrite, marcasite and pyrrhotite surfaces are all dissociated. The oxygen atoms and surface atoms of pyrite, marcasite and pyrrhotite surfaces have different bonding structures. Due to more atoms on pyrrhotite and marcasite surfaces interaction with oxygen atoms, the adsorption energies of O2 on pyrrhotite and marcasite surfaces are larger than that on pyrite surface. Larger values of Mulliken populations for O?Fe bond of pyrrhotite surface result in relative larger adsorption energy compared with that on marcasite surface.

参考文献

[1] Ruoshi Sun;M. K. Y. Chan;G. Ceder.First-principles electronic structure and relative stability of pyrite and marcasite:Implications for photovoltaic performance[J].Physical review, B. Condensed matter and materials physics,201123(23):235311:1-235311:12.
[2] ISTVAN DODONY;MIHALY POSFAI;PETER R. BUSECK.Structural relationship between pyrite and marcasite[J].The American mineralogist,19961/2(1/2):119-125.
[3] Thomas JE.;Smart RS.;Skinner WM..A mechanism to explain sudden changes in rates and products for pyrrhotite dissolution in acid solution[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,20011(1):1-12.
[4] Janzen MP.;Scharer JM.;Nicholson RV..Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,20009(9):1511-1522.
[5] Cui-hua Zhao;Bo-zeng Wu;Jian-hua Chen;Yu-qiong Li;Ye Chen.Electronic structure and properties of FeS2 with the space groups of Pa3 and P1[J].矿物冶金与材料学报,2013(07):671-677.
[6] 陈建华;钟建莲;李玉琼;陈晔;郭进.黄铁矿、白铁矿和磁黄铁矿的电子结构及可浮性[J].中国有色金属学报,2011(7):1719-1727.
[7] 赵翠华;吴伯增;陈建华.Electronic structure and flotation behavior of monoclinic and hexagonal pyrrhotite[J].中南大学学报(英文版),2015(2):466-471.
[8] 李玉琼;陈建华;陈晔;郭进.杂质对黄铁矿电子性质及反应活性影响的密度泛函理论研究[J].中国有色金属学报(英文版),2011(8):1887-1895.
[9] Mattila S;Leiro JA;Heinonen M.XPS study of the oxidized pyrite surface[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,20042(2):1097-1101.
[10] Usher CR;Paul KW;Narayansamy J;Kubicki JD;Sparks DL;Schoonen MAA;Strongin DR.Mechanistic aspects of pyrite oxidation in an oxidizing gaseous environment: An in situ HATR-IR isotope study[J].Environmental Science & Technology: ES&T,200519(19):7576-7584.
[11] R. Woods.Electrochemical potential controlling flotation[J].International Journal of Mineral Processing,20031/4(1/4):151-162.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%