欢迎登录材料期刊网

材料期刊网

高级检索

为探究黄铜矿生物浸出过程中与胞外多聚物结合的三价铁在矿物表面的富集,采用超声、加热和涡旋振荡提取矿物表面的三价铁。结果表明,在48°C条件下超声是一种有效的方法。扫描电镜和能量色散X射线能谱(EDX)分析表明,浸出后黄铜矿表面存在大量裂缝和凹陷,并且铁氧化物填充于这些裂缝和凹陷中。研究浸出过程黄铜矿表面三价铁和胞外多聚物的含量变化。结果表明,胞外多聚物的含量在浸出前10 d迅速上升,之后维持在一个稳定的水平,而三价铁含量随浸出时间的延长而增加,尤其是在浸出后期。

In order to investigate the enrichment of ferric iron bound by extracellular polymeric substance (EPS) on the mineral surface during bioleaching of chalcopyrite, several methods including sonication, heating and vortexing were used and sonication at 48 °C was shown as a good way to extract ferric iron. Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) analysis showed that lots of cracks and pits can be found on the chalcopyrite surface after bioleaching and that iron oxide was filled in these cracks and pits. The variations of contents of ferric iron and EPS on the chalcopyrite surface were investigated. The results indicated that the content of EPS increased rapidly in the first 10 d and then maintained at a stable level, while ferric iron content increased all the time, especially in the later stage of bioleaching.

参考文献

[1] 潘颢丹;杨洪英;佟琳琳;仲崇斌;赵玉山.生物浸出过程中黄铜矿钝化的控制方法[J].中国有色金属学报(英文版),2012(9):2255-2260.
[2] Jin-lan Xia;Yi Yang;Huan He.Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans[J].International Journal of Mineral Processing,20101/2(1/2):52-57.
[3] 王玉光;苏丽君;曾伟民;邱冠周;万利利;陈新华;周洪波.中度嗜热微生物浸出复杂多金属铜精矿的优化[J].中国有色金属学报(英文版),2014(4):1161-1170.
[4] Ali Behrad Vakylabad.A comparison of bioleaching ability of mesophilic and moderately thermophilic culture on copper bioleaching from flotation concentrate and smelter dust[J].International Journal of Mineral Processing,20111/4(1/4):94-99.
[5] Sand W;Gehrke T.Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.[J].Research in Microbiology,20061(1):49-56.
[6] E.M. Cordoba;J.A. Munoz;M.L. Blazquez.Leaching of chalcopyrite with ferric ion--Part II: Effect of redox potential[J].Hydrometallurgy,20083/4(3/4):88-96.
[7] Mario Vera;Axel Schippers;Wolfgang Sand.Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A[J].Applied Microbiology and Biotechnology,201317(17):7529-7541.
[8] 余润兰;刘晶;陈安;钟代立;李乾;覃文庆;邱冠周;顾帼华.嗜酸氧化亚铁硫杆菌(ATCC 23270)浸出黄铜矿过程中的EPS、Cu2+和Fe3+的相互作用机制[J].中国有色金属学报(英文版),2013(1):231-236.
[9] Gehrke T.;Telegdi J.;Thierry D.;Sand W..Importance of extracellular polymeric substances from Thiobacillusferrooxidans for bioleaching[J].Applied and Environmental Microbiology,19987(7):2743-2747.
[10] Weimin Zeng;Sunee Tan;Miao Chen;Guanzhou Qiu.Detection and analysis of attached microorganisms on the mineral surface during bioleaching of pure chalcopyrite with moderate thermophiles[J].Hydrometallurgy,20111/2(1/2):46-50.
[11] Ruiyong Zhang;Soren Bellenberg;Laura Castxo.Colonization and biofilm formation of the extremely acidophilic archaeon Ferroplasma acidiphilum[J].Hydrometallurgy,2014:245-252.
[12] 贺治国;杨彦平;周珊;胡岳华;钟慧.黄铁矿、单质硫、亚铁离子对浸矿微生物产生胞外多聚物的影响[J].中国有色金属学报(英文版),2014(4):1171-1178.
[13] K. Kinzler;T. Gehrke;J. Telegdi.Bioleaching--a result of interfacial processes caused by extracellular polymeric substances (EPS)[J].Hydrometallurgy,20031/2(1/2):83-88.
[14] YU Run-lan;TAN Jian-xi;GU Gou-hua;HU Yue-hua;QIU Guan-zhou.Mechanism of bioleaching chalcopyrite by Acidithiobacillus ferrooxidans in agar-simulated extracellular polymeric substances media[J].中南大学学报(英文版),2010(01):56-61.
[15] Fowler TA.;Crundwell FK..Leaching of zinc sulfide by Thiobacillus ferrooxidans: Experiments with acontrolled redox potential indicate no direct bacterial mechanism[J].Applied and Environmental Microbiology,199810(10):3570-3575.
[16] Zhou HB;Zeng WM;Yang ZF;Xie YJ;Qiu GZ.Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,20092(2):515-520.
[17] Zeng, W.;Qiu, G.;Zhou, H.;Peng, J.;Chen, M.;Tan, S.N.;Chao, W.;Liu, X.;Zhang, Y..Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,201018(18):7068-7075.
[18] Andrew J. Saterlay;Qi Hong;Richard G. Compton.Ultrasonically enhanced leaching: removal and destruction of cyanide and other ions from used carbon cathodes[J].Ultrasonics,20001(1):1-6.
[19] D. Bevilaqua;A.L.L.C. Leite;O. Garcia Jr.;O.H. Tuovinen.Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks[J].Process biochemistry,20024(4):587-592.
[20] Andrw J. Saterlay;Shelley J. Wilkins;Richard G. Compton.Towards greener disposal of waste cathode ray tubes via ultrasonically enhanced lead leaching[J].Green chemistry,20014(4):149-155.
[21] 余润兰;欧阳;谭建锡;吴发登;孙静;苗雷;钟代立.EPS对Acidithiobacillus.errooxidans在黄铜矿与黄铁矿表面吸附的影响[J].中国有色金属学报(英文版),2011(2):407-412.
[22] Wolfgang Sand;Tilman Gehrke;Peter-Georg Jozsa.(Bio) chemistry of bacterial leaching-direct vs. indirect bioleaching[J].Hydrometallurgy,20012/3(2/3):159-175.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%