欢迎登录材料期刊网

材料期刊网

高级检索

为了探索应变速率对超细晶材料高温变形特点的影响,通过压缩实验以及显微观察,系统研究在不同温度和应变速率下等通道转角挤压 Al 的变形和损伤特点以及显微微组织。结果表明:应变速率的提高消除了等通道转角挤压 Al 在变形温度 T≤473 K 时表现出的应变软化现象,并且大大提高了变形温度在473~573 K 范围的屈服强度和流变应力。等通道转角挤压 Al 的塑性变形主要由剪切变形控制。当应变速率为1×10?3 s?1时,变形温度T ≥473 K 时可观察到沿剪切带形成了大量裂纹,并且二次剪切带基本消失。而当应变速率为1×10?2 s?1时,只有在变形温度低于473 K 时才能观察到沿剪切带形成的裂纹,并且当压缩温度 T≥473 K 时,二次剪切带变得更加清晰。等通道转角挤压 Al 的显微组织主要由亚晶组成,应变速率的提高抑制了亚晶的长大,从而导致高温屈服强度和流变应力的提高。

To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.

参考文献

[1] Q. Yang;A.K. Ghosh.Deformation behavior of ultrafine-grain (UFG) AZ31B Mg alloy at room temperature[J].Acta materialia,200619(19):5159-5170.
[2] D.R. Fang;Z.F. Zhang;S.D. Wu.Effect of equal channel angular pressing on tensile properties and fracture modes of casting Al-Cu alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20061/2(1/2):305-313.
[3] Chen B;Lin DL;Jin L;Zeng XQ;Lu C.Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20080(0):113-116.
[4] Ehab A.El-Danaf.Mechanical properties and microstructure evolution of 1050 aluminum severely deformed by ECAP to 16 passes[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):189-200.
[5] P. Cavaliere.Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals[J].International Journal of Fatigue,200910(10):1476-1489.
[6] Zhao-Yuan Yu;Qing-Wei Jiang;Xiao-Wu Li.Temperature-dependent deformation and damage behaviour of ultrafine-grained copper under uniaxial compression[J].Physica Status Solidi, A. Applied Research,200810(10):2417-2421.
[7] Feng-Wu Long;Qing-Wei Jiang;Lin Xiao.Compressive Deformation Behaviors of Coarse- and Ultrafine-Grained Pure Titanium at Different Temperatures: A Comparative Study[J].Materials transactions,20118(8):1617-1622.
[8] May J;Hoppel HW;Goken M.Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation[J].Scripta materialia,20052(2):189-194.
[9] H. Conrad;K. Jung.On the Strain Rate Sensitivity of the Flow Stress of ultrafine-grained Cu Processed by Equal Channel Angular Extrusion (ECAE)[J].Scripta materialia,20055(5):581-584.
[10] Y.J. Li;X.H. Zeng;W. Blum.Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu[J].Acta materialia,200417(17):5009-5018.
[11] F. H. Dalla Torre;E. V. Pereloma;C. H. J. Davies.Strain rate sensitivity and apparent activation volume measurements on equal channel angular extruded Cu processed by one to twelve passes[J].Scripta materialia,20045(5):367-371.
[12] Farrokh, B;Khan, AS.Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling[J].International Journal of Plasticity,20095(5):715-732.
[13] Tao Suo;Yulong Li;Feng Zhao;Xueling Fan;Weiguo Guo.Compressive behavior and rate-controlling mechanisms of ultrafine grained copper over wide temperature and strain rate ranges[J].Mechanics of materials,2013Jul.(Jul.):1-10.
[14] 汤忠斌;索涛;张部声;李玉龙;赵峰;范学领.等径通道挤压铝在较宽温度和应变率下的单轴压缩行为[J].中国有色金属学报(英文版),2014(8):2446-2451.
[15] X. W. Li;S. D. Wu;Y. Wu.Surface Deformation Features in Ultrafine-Grained Copper Cyclically Stressed at Different Temperatures[J].Materials transactions,200512(12):3077-3080.
[16] Shokoufeh Malekjani;Peter D. Hodgson;Nicole E. Stanford.The role of shear banding on the fatigue ductility of ultrafine-grained aluminium[J].Scripta materialia,20135(5):269-272.
[17] I. Sabirov;M.R. Barnett;Y. Estrin.The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy[J].Scripta materialia,20092(2):181-184.
[18] Qing-wei Jiang;Lin Xiao;Xiao-wu Li.A Comparison of Temperature-Dependent Compressive Deformation Features of Ultrafine-Grained Ti and Cu Produced by ECAP[J].Materials Science Forum,2011TN.682(TN.682):41-45.
[19] W. Blum;Y.J. Li;K. Durst.Stability of ultrafine-grained Cu to subgrain coarsening and recrystallization in annealing and deformation at elevated temperatures[J].Acta materialia,200917(17):5207-5217.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%