欢迎登录材料期刊网

材料期刊网

高级检索

对 Ti?25V?15Cr?0.2Si 阻燃钛合金在温度为950~1100°C,应变速率为0.001~1 s?1条件下进行热压缩试验,研究了该合金在β相区变形时的动态再结晶行为。结果表明,该合金的热变形机制主要是由动态再结晶支配的,而动态再结晶新晶粒主要是通过弓弯形核机制来形成的。当应变速率降低和变形温度升高时动态再结晶易于发生;当应变速率为0.01~0.1 s?1,变形温度为950~1050°C 时,动态再结晶使晶粒细化;当变形温度高于1100°C,应变速率低于0.001 s?1时,动态再结晶晶粒粗化。为了确定在不同变形条件下的动态再结晶体积分数和动态再结晶晶粒尺寸,分别建立了该合金动态再结晶动力学和动态再结晶晶粒尺寸预测模型。

Dynamic recrystallization (DRX) behavior in β phase region for the burn resistant titanium alloy Ti?25V?15Cr?0.2Si was investigated with a compression test in the temperature range of 950?1100 °C and the strain rate of 0.001?1 s?1. The results show that deformation mechanism of this alloy in hot deformation is dominated by DRX, and new grains of DRX are evolved by bulging nucleation mechanism as a predominant mechanism. DRX occurs more easily with the decrease of strain rate and the increase of deformation temperature. Grain refinement is achieved due to DRX during the hot deformation at strain rate range of 0.01?0.1 s?1 and temperature range of 950?1050 °C. DRX grain coarsening is observed for the alloy deformed at the higher temperatures of 1100 °C and the lower strain rates of 0.001 s?1. Finally, in order to determine the recrystallized fraction and DRX grain size under different deformation conditions, the prediction models of recrystallization kinetics and recrystallized grain sizes were established.

参考文献

[1] Ying Ying Zong;Shuhui Huang;Yaoqi Wang;De Bin Shan.Strengthening versus softening mechanisms by hydrogen addition in β-Ti40 alloy[J].International journal of hydrogen energy,20147(7):3498-3504.
[2] Zhu, Y.;Zeng, W.;Zhao, Y.;Shu, Y.;Zhang, X..Effect of processing parameters on hot deformation behavior and microstructural evolution during hot compression of Ti40 titanium alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:384-391.
[3] 郭良刚;董可可;张保军;杨合;郑文达;刘雄伟.AISI304不锈钢管穿孔针挤压动态再结晶规律[J].中国有色金属学报(英文版),2012(z2):519-527.
[4] 何运斌;潘清林;陈琴;张志野;刘晓艳;李文斌.ZK60镁合金热变形过程中的应变强化与动态再结晶行为[J].中国有色金属学报(英文版),2012(2):246-254.
[5] Wu, H.-Y.;Yang, J.-C.;Liao, J.-H.;Zhu, F.-J..Dynamic behavior of extruded AZ61 Mg alloy during hot compression[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:68-75.
[6] 武川;杨合;李宏伟.近α钛合金TA15在β单相区等温变形过程中不连续动态再结晶的模拟与实验研究[J].中国有色金属学报(英文版),2014(6):1819-1829.
[7] 欧阳德来;王克鲁;崔霞.Ti-6Al-2Zr-1Mo-1V合金β锻动态再结晶[J].中国有色金属学报(英文版),2012(4):761-767.
[8] 王国;惠松骁;叶文君;米绪军.Ti-3.0Al-3.7Cr-2.0Fe-0.1B钛合金的热压缩行为[J].中国有色金属学报(英文版),2012(12):2965-2971.
[9] Sun, Y.;Zeng, W.D.;Zhao, Y.Q.;Zhang, X.M.;Shu, Y.;Zhou, Y.G..Research on the hot deformation behavior of Ti40 alloy using processing map[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20113(3):1205-1211.
[10] 赵永庆;舒滢;曾卫东;吴玮璐;吴欢;周义刚;杨海瑛;李倩.高度稳定化β型Ti40阻燃钛合金的动态再结晶行为[J].稀有金属材料与工程,2009(8):1432-1436.
[11] Zhao Yongqing;Zhou Lian;Deng Ju.High temperature deformation mechanism of Ti-40 burn resistant titanium alloy as-annealing[J].稀有金属(英文版),1999(03):203.
[12] 张学敏;赵永庆;曾卫东;蔺伟.Ti40阻燃合金粗晶超塑性变形行为及机理[J].稀有金属材料与工程,2010(3):433-436.
[13] McQueen HJ.;Ryan ND..Constitutive analysis in hot working[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20021-2 Special Issue SI(1-2 Special Issue SI):43-63.
[14] 徐文臣;单德彬;李春峰;吕炎.TA15钛合金的动态热压缩行为及其机理研究[J].航空材料学报,2005(4):10-15,19.
[15] D. G. Robertson;H. B McShane.Analysis of high temperature flow stress of titanium alloys IMI 550 and Ti-10V-2Fe-3Al during isothermal forging[J].Materials Science and Technology: MST: A publication of the Institute of Metals,19984(4):339-345.
[16] 徐岩;胡连喜;孙宇.铸态AZ91D镁合金的动态再结晶动力学[J].中国有色金属学报(英文版),2014(6):1683-1689.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%