欢迎登录材料期刊网

材料期刊网

高级检索

采用蛇形通道法制备 ZL101铝合金半固态浆料,研究浇注温度、弯道数量、蛇形通道温度对 ZL101铝合金半固态浆料显微组织的影响。结果表明:浇注温度在630~680°C范围时可获得满意的ZL101铝合金半固态浆料,随浇注温度的降低,初生α(Al)由蔷薇状向近球状或球状组织演变。在相同浇注温度下,弯道数量增加,可以改善初生α(Al)晶粒的形貌,降低晶粒尺寸。当蛇形通道温度提高时,通过降低浇注温度,同样可以获得合格的半固态浆料。弯道内的合金熔体具有“自搅拌”作用,使初生晶核演变为球状或近球状晶粒。

Semi-solid slurry of ZL101 aluminum alloy was prepared using serpentine channel. The influences of the pouring temperature, the number of curves and the serpentine channel temperature on the microstructure of semi-solid ZL101 aluminum alloy were investigated. The results show that, satisfied semi-solid slurry of ZL101 aluminum alloy was prepared with pouring at 630?680 °C. The morphology of primaryα(Al) grains transforms from rosette to spheroid with the decrease of pouring temperature. At the same pouring temperature, increasing the number of curves can improve the morphology of primaryα(Al) grains and decrease the grain size. Qualified slurry can be attained with lowering the pouring temperature when the serpentine channel temperature is higher. The alloy melt has the effect of“self-stirring”in the serpentine channel, which can make the primary nuclei gradually evolve into spherical and near-spherical grains.

参考文献

[1] Z. Fan.Semisolid metal processing[J].International Materials Reviews,20022(2):49-85.
[2] Z.D. Zhao;W.M. Mao.PREPARATION OF SEMI-SOLID AlSi7Mg ALLOY SLURRY[J].金属学报(英文版),2008(02):139-145.
[3] S.M.J.ALVANI;H.AASHURI;A.KOKABI;R.BEYGI.Semisolid joining of aluminum A356 alloy by partial remelting and mechanical stirring[J].中国有色金属学报(英文版),2010(09):1792-1798.
[4] 周冰;康永林;朱国明;郜俊震;祁明凡;张欢欢.强制对流流变成形制备7075铝合金半固态浆料及其数值模拟[J].中国有色金属学报(英文版),2014(4):1109-1116.
[5] 汤孟欧;徐骏;张志峰;白月龙.环缝结构对电磁连铸流场和温度场的影响[J].中国有色金属学报(英文版),2011(5):1123-1129.
[6] M.A. Easton;H. Kaufmann;W. Fragner.The effect of chemical grain refinement and low superheat pouring on the structure of NRC castings of aluminium alloy Al-7Si-0.4Mg[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20061/2(1/2):135-143.
[7] X. R. Yang;W. M. Mao;S. Pei.Preparation of semisolid A356 alloy feedstock cast through vertical pipe[J].Materials Science and Technology: MST: A publication of the Institute of Metals,20079(9):1049-1053.
[8] YANG Xiao-rong;MAO Wei-min;PEI Sheng.Influence of process parameters on microstructure of semisolid A356 alloy slug cast through vertical pipe[J].中国有色金属学会会刊(英文版),2008(01):99-103.
[9] R. G. Guan;F. R. Cao;L. Q. Chen;J. P. Li;C. Wang.Dynamical solidification behaviors and microstructural evolution during vibrating wavelike sloping plate process[J].Journal of Materials Processing Technology,20095(5):2592-2601.
[10] H.M. Guo;X.J. Yang;B. Hu.RHEOCASTING OF A356 ALLOY BY LOW SUPERHEAT POURING WITH A SHEARING FIELD[J].金属学报(英文版),2006(05):328-334.
[11] 张小立;谢水生;李廷举;杨浩强;金俊泽.阻尼冷却管法制备A356铝合金半固态浆料的研究[J].稀有金属材料与工程,2007(5):915-919.
[12] 杨斌;毛卫民;宋晓俊.半固态7075铝合金浆料温度均匀化处理过程中的组织演化规律[J].中国有色金属学报(英文版),2013(12):3592-3597.
[13] Legoretta EC;Atkinson HV;Jones H.Cooling slope casting to obtain thixotropic feedstock I: observations with a transparent analogue[J].Journal of Materials Science,200816(16):5448-5455.
[14] S. Nourouzi;H. Baseri;A. Kolahdooz;S. M. Ghavamodini.Optimization of semi-solid metal processing of A356 aluminum alloy[J].Journal of Mechanical Science and Technology,201312(12):3869-3874.
[15] Xiao-rong Yang;Wei-min Mao;Chong Gao.Semisolid A356 alloy feedstock poured through a serpentine channel[J].矿物冶金与材料学报,2009(05):603-607.
[16] Dao, V.;Zhao, S.;Lin, W.;Zhang, C..Effect of process parameters on microstructure and mechanical properties in AlSi9Mg connecting-rod fabricated by semi-solid squeeze casting[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:95-102.
[17] 刘志勇;毛卫民;王伟番;郑志凯.采用蛇形通道制备半固态A380铝合金浆料[J].中国有色金属学报(英文版),2015(5):1419-1426.
[18] 陈正周;毛卫民;吴宗闯.蛇形通道浇注流变压铸铝合金拉伸试样的力学性能和微观组织[J].中国有色金属学报(英文版),2011(7):1473-1479.
[19] 朱文志;毛卫民;涂琴.蛇形通道浇注制备半固态7075铝合金浆料[J].中国有色金属学报(英文版),2014(4):954-960.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%