欢迎登录材料期刊网

材料期刊网

高级检索

为了研究过程pH刺激对中度嗜热菌浸出黄铜矿的影响,测定浸出过程中铜的浸出率以及游离和吸附菌的微生物群落结构动态变化。结果表明,将浸出第14天浸出过程的pH分别调节至1.0及3.0时,游离菌和吸附菌的生长均出现一个适应期。同时,未调节pH的对照组铜的浸出率为87.5%;而调节过程pH至1.0和3.0时,铜的浸出率分别下降至86.9%和64.0%。实时定量PCR分析表明,pH刺激对吸附菌的影响比对游离菌的影响小,说明吸附菌比游离菌对过程pH刺激具有更强的抗性。此外,调节过程pH至3.0显著破坏了游离菌和吸附菌的群落结构,浸出体系无法恢复至正常状态。

In order to investigate the effects of processing pH stimulation on bioleaching of chalcopyrite by moderate thermophiles, copper leaching rates and the dynamics of microbial community structures of free and attached cells were monitored. The results indicated that when the processing pH values were respectively adjusted to 1.0 and 3.0 on day 14, both free and attached cells experienced an adaptive phase. Meanwhile, the copper leaching rates were 86.9%and 64.0%, respectively, as opposed to a copper leaching rate of 87.5% in the control group without pH stimulation. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis suggested that pH stimulation imposed less impact on the attached organisms than on the free cells, indicating that the attached cells were more resistant to processing pH stimulation than the free cells. Furthermore, adjusting processing pH to 3.0 significantly disrupted both free and attached microbial communities, and the bioleaching system could not recover to the normal status as the control group.

参考文献

[1] 夏乐先;汤露;夏金兰;尹礎;柴立元;赵小娟;聂珍媛;柳建设;邱冠周.元素硫对黄铜矿生物浸出行为及群落结构的影响[J].中国有色金属学报(英文版),2012(1):192-198.
[2] 王军;赵红波;庄田;覃文庆;朱珊;邱冠周.微生物浸出Pb-Zn-Sn黄铜矿及其生物群落的演替分析[J].中国有色金属学报(英文版),2013(12):3758-3762.
[3] Weimin Zeng;Guanzhou Qiu;Hongbo Zhou.Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48 °C[J].Hydrometallurgy,20113/4(3/4):259-263.
[4] 王玉光;苏丽君;曾伟民;邱冠周;万利利;陈新华;周洪波.中度嗜热微生物浸出复杂多金属铜精矿的优化[J].中国有色金属学报(英文版),2014(4):1161-1170.
[5] Tunde V. Ojumu;Jochen Petersen.The kinetics of ferrous ion oxidation by Leptospirillum ferriphilum in continuous culture: The effect of pH[J].Hydrometallurgy,20111/2(1/2):5-11.
[6] H.R. Watling;D.M. Collinson;D.W. Shiers.Effects of pH, temperature and solids loading on microbial community structure during batch culture on a polymetallic ore[J].Minerals Engineering,2013:68-76.
[7] Hui Liu;Guohua Gu;Yangbao Xu.Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans[J].Hydrometallurgy,20111/2(1/2):143-148.
[8] Sand W;Gehrke T.Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.[J].Research in Microbiology,20061(1):49-56.
[9] 贺治国;杨彦平;周珊;胡岳华;钟慧.黄铁矿、单质硫、亚铁离子对浸矿微生物产生胞外多聚物的影响[J].中国有色金属学报(英文版),2014(4):1171-1178.
[10] 余润兰;欧阳;谭建锡;吴发登;孙静;苗雷;钟代立.EPS对Acidithiobacillus.errooxidans在黄铜矿与黄铁矿表面吸附的影响[J].中国有色金属学报(英文版),2011(2):407-412.
[11] Wang, Y.;Su, L.;Zhang, L.;Zeng, W.;Wu, J.;Wan, L.;Qiu, G.;Chen, X.;Zhou, H..Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2012:348-354.
[12] Zhou HB;Zeng WM;Yang ZF;Xie YJ;Qiu GZ.Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,20092(2):515-520.
[13] Runlan Yu;Lijuan Shi;Guohua Gu;Dan Zhou;Long You;Miao Chen;Guanzhou Qiu;Weimin Zeng.The shift of microbial community under the adjustment of initial and processing pH during bioleaching of chalcopyrite concentrate by moderate thermophiles[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2014:300-307.
[14] Liu CQ;Plumb J;Hendry P.Rapid specific detection and quantification of bacteria and archaea involved in mineral sulfide bioleaching using real-time PCR[J].Biotechnology and Bioengineering,20062(2):330-336.
[15] Zhang RB;Wei MM;Ji HG;Chen XH;Qiu GZ;Zhou HB.Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite[J].Applied Microbiology and Biotechnology,20096(6):1161-1168.
[16] Waite Ian S;Blackburn Adrian;Husband Rebecca;Rushton Steven P;Manning David C;O'Donnell Anthony G.Actinobacterial community dynamics in long term managed grasslands.[J].Antonie van Leeuwenhoek: Journal of Microbiology and serology,20094(4):319-334.
[17] Dopson M;Lindstrom EB.Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite[J].Microbial Ecology: An International Journal,20041(1):19-28.
[18] Javier Vilcaez;Ryoichi Yamada;Chihiro Inoue.Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures[J].Hydrometallurgy,20091/2(1/2):62-71.
[19] Y. Rodriguez;A. Ballester;M.L. Blazquez.New information on the sphalerite bioleaching mechanism at low and high temperature[J].Hydrometallurgy,20031/2(1/2):57-66.
[20] XIA Le-xian;LIU Jian-she;XIAO Li;ZENG Jia;LI Ban-mei;GENG Mei-mei;QIU Guan-zhou.Single and cooperative bioleaching of sphalerite by two kinds of bacteria——Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans[J].中国有色金属学会会刊(英文版),2008(01):190-195.
[21] Feng, S.;Yang, H.;Xin, Y.;Gao, K.;Yang, J.;Liu, T.;Zhang, L.;Wang, W..A novel and highly efficient system for chalcopyrite bioleaching by mixed strains of Acidithiobacillus[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2013:456-462.
[22] Martin J. Leahy;M. Philip Schwarz.Modelling jarosite precipitation in isothermal chalcopyrite bioleaching columns[J].Hydrometallurgy,20091/2(1/2):181-191.
[23] V. Gautier;B. Escobar;T. Vargas.Cooperative action of attached and planktonic cells during bioleaching of chalcopyrite with Sulfolobus metallicus at 70 deg C[J].Hydrometallurgy,20081/4(1/4):121-126.
[24] Zhou H.;Zhang R.;Hu P.;Zeng W.;Xie Y.;Wu C.;Qiu G..Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite.[J].Journal of applied microbiology,20082(2):591-601.
[25] Li, Bo;Chen, Yaping;Liu, Qian;Hu, Songnian;Chen, Xinhua.Complete Genome Analysis of Sulfobacillus acidophilus Strain TPY, Isolated from a Hydrothermal Vent in the Pacific Ocean[J].Journal of bacteriology,201119(19):5555-5556.
[26] Zhu, Jianyu;Jiao, Weifeng;Li, Qian;Liu, Xueduan;Qin, Wenqing;Qiu, Guanzhou;Hu, Yuehua;Chai, Liyuan.Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching[J].Journal of industrial microbiology & biotechnology,201212(12):1833-1840.
[27] Grande Burgos, M. J;Lucas Lopez, R;Lopez Aguayo, M. del C;Perez Pulido, R;Galvez, A..Inhibition of planktonic and sessile Salmonella enterica cells by combinations of enterocin AS-48, polymyxin B and biocides.[J].Food Control,20131(1):214-221.
[28] J.J. Plumb;R. Muddle;P.D. Franzmann.Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms[J].Minerals Engineering,20081(1):76-82.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%