欢迎登录材料期刊网

材料期刊网

高级检索

研究预退火温度对气雾化Al?27%Si合金粉末压制性能的影响,并分析退火粉末的显微组织和硬度。预退火不仅降低Al基体硬度,而且导致针状共晶Si相熔解、过饱和固溶Si原子析出和长大以及初晶Si相球化。合金粉末的压制性能随着退火温度升高至400°C而逐渐提高;但是,由于出现Si?Si相缠结和密集分布的Si颗粒,粉末的压制性能在退火温度高于400°C时反而有所下降。粉末在400°C退火4 h后,其相对密度最大达到96.1%。另外,预退火合金粉末压制性能的差异在压制压力为175 MPa时达到最大。因此,通过合适的预退火处理可以大幅提高气雾化Al?Si合金粉末的室温压制性能。

Effect of pre-annealing treatment temperature on compactibility of gas-atomized Al?27%Si alloy powders was investigated. Microstructure and hardness of the annealed powders were characterized. Pre-annealing results in decreasing Al matrix hardness, dissolving of needle-like eutectic Si phase, precipitation and growth of supersaturated Si atoms, and spheroidisation of primary Si phase. Compactibility of the alloy powders is gradually improved with increasing the annealing temperature to 400 °C. However, it decreases when the temperature is above 400 °C owing to the existence of Si?Si phase clusters and the densely distributed Si particles. A maximum relative density of 96.1%is obtained after annealing at 400 °C for 4 h. In addition, the deviation of compactibility among the pre-annealed powders reaches a maximum at a pressure of 175 MPa. Therefore, a proper pre-annealing treatment can significantly enhance the cold compactibility of gas-atomized Al?Si alloy powders.

参考文献

[1] Matsuura K.;Kudoh M.;Kinoshita H.;Takahashi H..Precipitation of Si particles in a super-rapidly solidified Al-Si hypereutectic alloy[J].Materials Chemistry and Physics,20032/3(2/3):393-395.
[2] 朱学卫;王日初;彭建;彭超群.半固态二次加热过程中喷射沉积过共晶Al-Si合金的显微组织演变[J].中国有色金属学报(英文版),2014(6):1766-1772.
[3] D. Tourret;G. Reinhart;Ch.-A. Gandin.Gas atomization of Al-Ni powders: Solidification modeling and neutron diffraction analysis[J].Acta materialia,201117(17):6658-6669.
[4] Ravi K. Enneti;Adam Lusin;Sumeet Kumar.Effects of lubricant on green strength, compressibility and ejection of parts in die compaction process[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2013:22-29.
[5] F.Delie;D.Bouvard.Effect of inclusion morphology on the densification of powder composites[J].Acta materialia,199811(11):3905-3913.
[6] Wu W.;Jiang G..EXPERIMENTAL AND NUMERICAL INVESTIGATION OF IDEALIZED CONSOLIDATION PART 1: STATIC COMPACTION[J].Acta materialia,200017(17):4323-4330.
[7] M.F. Moreno;C.J.R. Gonzalez Oliver.Densification of Al powder and Al-Cu matrix composite (reinforced with 15% Saffil short fibres) during axial cold compaction[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,20113(3):297-305.
[8] Xiaoya Liu;Lianxi Hu;Erde Wang.Cold compaction behavior of nano-structured Nd-Fe-B alloy powders prepared by different processes[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2013:682-687.
[9] K. N. Ramakrishana.A compaction study on ceramic powders[J].Materials Letters,19973/4(3/4):191-194.
[10] Olle Skrinjar;Per-Lennart Larsson.Cold compaction of composite powders with size ratio[J].Acta materialia,20047(7):1871-1884.
[11] Razavi-Tousi, S.S.;Yazdani-Rad, R.;Manafi, S.A..Effect of volume fraction and particle size of alumina reinforcement on compaction and densification behavior of Al-Al_2O_3 nanocomposites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20113(3):1105-1110.
[12] H.R. Hafizpour;M. Sanjari;A. Simchi.Analysis Of The Effect Of Reinforcement Particles On The Compressibility Of Al-sic Composite Powders Using A Neural Network Model[J].Materials & design,20095(5):1518-1523.
[13] H.R. Hafizpour;A. Simchi;S. Parvizi.Analysis of the compaction behavior of Al-SiC nanocomposites using linear and non-linear compaction equations[J].Advanced Powder Technology: The internation Journal of the Society of Powder Technology, Japan,20103(3):273-278.
[14] Mohammad Moazami-Goudarzi;Farshad Akhlaghi.Effect of nanosized SiC particles addition to CP Al and Al-Mg powders on their compaction behavior[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2013:126-133.
[15] H. Abdoli;E. Salahi;H. Famoush.Evolutions during synthesis of Al-AlN-nanostructured composite powder by mechanical alloying[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20081/2(1/2):166-172.
[16] Joao B. Fogagnolo;Elisa M. Ruiz-Navas;Maria H. Robert.The effects of mechanical alloying on the compressibility of aluminium matrix composite powder[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20031/2(1/2):50-55.
[17] P. J. WARD;H. V. ATKINSON;P. R. G. ANDERSON.SEMI-SOLID PROCESSING OF NOVEL MMCs BASED ON HYPEREUTECTIC ALUMINIUM-SILICON ALLOYS[J].Acta materialia,19965(5):1717-1727.
[18] 李艳霞;刘俊友;王文韶;刘国权.液固分离和喷射沉积制备Al-45%Si合金的组织及性能[J].中国有色金属学报(英文版),2013(4):970-976.
[19] Yucel Birol.Microstructural evolution during annealing of a rapidly solidified Al-12Si alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20071/2(1/2):81-86.
[20] Baik KH;Seok HK;Kim HS;Grant PS.Non-equilibrium microstructure and thermal stability of plasma-sprayed Al-Si coatings[J].Journal of Materials Research,20058(8):2038-2045.
[21] H. Asgharzadeh;A. Simchi;H.S. Kim.A plastic-yield compaction model for nanostructured Al6063 alloy and Al6063/Al2O nanocomposite powder[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,20112/3(2/3):215-220.
[22] A.H. Tavakoli;A. Simchi;S.M. Seyed Reihani.Study of the compaction behavior of composite powders under monotonic and cyclic loading[J].Composites science and technology,200514(14):2094-2104.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%