欢迎登录材料期刊网

材料期刊网

高级检索

采用柠檬酸络合法制备了Co/CeO2及其钙掺杂系列催化剂,并对催化剂进行了低温N2物理吸附、X射线衍射、H2程序升温还原、傅里叶变换红外光谱、高分辨透射电镜表征以及乙醇水蒸气重整催化性能测试.结果表明,所制Co/CeO2催化剂具有良好的乙醇水蒸气重整催化性能,500℃时乙醇能全部转化为C1,氢气产率高达85%以上.Ca掺杂减小了载体CeO2纳米颗粒尺寸,但对还原后Co0尺寸的影响较小.当Ca掺杂量大于5.0%时,催化剂氧化还原性能和乙醇水蒸气重整催化性能下降.较高的还原温度有利于体相Ce4+还原为Ce3+,并且提高了催化活性,认为金属-氧化物边界的增加提高了催化活性.初步稳定性考察结果表明,5%钙掺杂后的催化剂具有更好的抗积炭性能.

Co/CeO2 catalysts with and without calcium doping were prepared by the citric acid complexing method,and characterized by N2 adsorption,X-ray diffraction,temperature-programmed reduction,Fourier transform infrared spectroscopy,and high resolution transmission electron microscope.Their catalytic performance measurement for ethanol steam reforming (ESR) at 400-650 ℃ and atmospheric pressure with a steam-to-carbon ratio of 3.0 and gas hourly space velocity of 50000 ml/(g·h) was measured.The citric acid complexing method enhanced metal-support interaction.The Co/CeO2 catalysts gave almost 100% ethanol conversion and good hydrogen yield at 500 ℃.Calcium doping in the catalyst reduced the particle size of CeO2,but had little effect on the metallic cobalt size after reduction.Calcium doping higher than 5% deteriorated the redox properties and ESR catalytic performance,which was attributed to the fouling of CeO2 by CaO.Catalysts activated at 650 ℃ showed a better performance,which was due to a higher reduction degree of ceria and increase of the metal-oxide interface.Stability investigation of the catalysts suggested that 5% calcium doping enhanced carbon deposition resistance.

参考文献

[1] Navarro R M;Pe(n)a M A;Fierro J L G .[J].Chemical Reviews,2007,107:3952.
[2] Demirbas A .[J].Progress in Energy and Combustion Science,2007,33:1.
[3] Song H;Zhang L;Ozkan U S .[J].Industrial and Engineering Chemistry Research,2010,49:8984.
[4] Song H;Zhang L;Watson R B;Braden D Ozkan U S .[J].Catalysis Today,2007,129:346.
[5] 孙杰,吴锋,邱新平,王芳,郝少军,刘媛.Ni/Al2O3和Ni/La2O3催化剂上低温乙醇水蒸气重整制氢[J].催化学报,2004(07):551-555.
[6] Zhang L F;Liu J;Li W;Guo C L Zhang J L .[J].Journal of Natural Gas Chemistry,2009,18:55.
[7] 王红,刘鹏翔,刘源,秦永宁.乙醇水蒸气重整Co/CeO2催化剂[J].催化学报,2006(11):976-982.
[8] 杨宇,吴绯,马建新.载体对镍催化剂催化乙醇水蒸气重整制氢反应性能的影响[J].催化学报,2005(02):131-137.
[9] 张保才,李勇,蔡伟杰,唐晓兰,徐奕德,申文杰.Ni-Cu/CeO2催化剂上乙醇水蒸气重整反应[J].催化学报,2006(07):567-572.
[10] Vaidya P D;Rodrigues A E .[J].Chemical Engineering Journal,2006,117:39.
[11] 马飞,储伟,黄利宏,余晓鹏,吴永永.Zn掺杂的LaCoO3钙钛矿用于乙醇水蒸气重整制氢反应[J].催化学报,2011(06):970-977.
[12] Kugai J;Subramani V;Song CS;Engelhard MH;Chin YH .Effects of nanocrystalline CeO2 supports on the properties and performance of Ni-Rh bimetallic catalyst for oxidative steam reforming of ethanol[J].Journal of Catalysis,2006(2):430-440.
[13] Tosti S;Fabbricino M;Moriani A;Agatiello G Scudieri C Borgognoni F Santucci A .[J].Journal of Membrane Science,2011,377:65.
[14] Llorca J;de la Piscina P R;Dalmon J A;Sales J Homs N .[J].Applied Catalysis B:Environmental,2003,43:355.
[15] Llorca J;Homs N;Sales J;de la Piscina P R .[J].Journal of Catalysis,2002,209:306.
[16] Song H;Mirkelamoglu B;Ozkan U S .[J].Applied Catalysis A:General,2010,382:58.
[17] Song H;Ozkan US .Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility[J].Journal of Catalysis,2009(1):66-74.
[18] Song H;Tan B;Ozkan U S .[J].Catalysis Letters,2009,132:422.
[19] Kim D W;Oh S G .[J].Materials Letters,2005,59:976.
[20] 张嫒;李增喜;闻学兵;刘源 .[J].催化学报,2005,26:1059.
[21] 王林,陈顺权,刘源.NiO/LaMnO3催化剂用于乙醇水蒸气重整反应[J].物理化学学报,2008(05):849-854.
[22] 张晓亮;王卫平;熊国兴;杨维慎 .[J].催化学报,2010,31:1049.
[23] Mendes D;Tosti S;Borgognoni F;Mendes A Madeira L M .[J].Catalysis Today,2010,156:107.
[24] Basile A;Pinacci P;Iulianelli A;Broglia M Drago F Liguori S Longo T Calabro V .[J].International Journal of Hydrogen Energy,2011,36:2029.
[25] Iulianelli A;Liguori S;Longo T;Tosti S Pinacci P Basile A .[J].International Journal of Hydrogen Energy,2010,35:3159.
[26] Chen Y;Shao Z;Xu N .[J].Energy and Fuels,2008,22:1873.
[27] De Lima, S.M.;Da Silva, A.M.;Da Costa, L.O.O.;Graham, U.M.;Jacobs, G.;Davis, B.H.;Mattos, L.V.;Noronha, F.B. .Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO_2 catalyst[J].Journal of Catalysis,2009(2):268-281.
[28] Sanchez-Sanchez M C;Yerga R M N;Kondarides D I;Verykios X E Fierro J L G .[J].Journal of Physical Chemistry A,2010,114:3873.
[29] Descorme C.;Duprez D.;Madier Y. .Infrared study of oxygen adsorption and activation on cerium-zirconium mixed oxides[J].Journal of Catalysis,2000(1):167-173.
[30] Duprez D;Descorme C;Birchem T;Rohart E .[J].Topics in Catalysis,2001,16:49.
[31] Can L;Domen K;Maruya K;Onishi T .[J].Journal of the American Chemical Society,1989,111:7683.
[32] Song H;Ozkan U S .[J].Journal of Physical Chemistry A,2010,114:3796.
[33] Pereira EB;Homs N;Marti S;Fierro JLG;de la Piscina PR .Oxidative steam-reforming of ethanol over Co/SiO2, Co-Ru/SiO2 and Co-Ru/SiO2 catalysts: Catalytic behavior and deactivation/regeneration processes[J].Journal of Catalysis,2008(1):206-214.
[34] Granados M L;Gurbani A;Mariscal R;Fierro J L G .[J].Journal of Catalysis,2008,256:172.
[35] de la Piscina P R;Homs N .[J].Chemical Society Reviews,2008,37:2459.
[36] Ni M;Leung D Y C;Leung M K H .[J].International Journal of Hydrogen Energy,2007,32:3238.
[37] Cheekatamarla P K;Finnerty C M .[J].Journal of Power Sources,2006,160:490.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%