欢迎登录材料期刊网

材料期刊网

高级检索

以磷钨酸铯盐Cs2.5H0.5PW12O40(CsPW)为活性组分,负载到Nb2O5载体上,并用于甘油脱水制备丙烯醛的反应中.通过调节焙烧温度(400-700°C)以及活性组分负载量(5-60 wt%),对催化剂酸性进行调节. CsPW负载量为20 wt%,500°C焙烧的CsPW/Nb2O5催化剂性能最佳,甘油转化率为96%,丙烯醛选择性为80%,反应10 h内没有失活现象,并且该催化剂具有良好的热稳定性,可通过烧炭进行再生.

Acrolein production by gas-phase dehydration of glycerol at 300 °C, catalyzed by a Cs+-substituted Keggin-type phosphotungstate, Cs2.5H0.5PW12O40 (CsPW), supported on Nb2O5 was investigated. The catalysts were characterized using N2 adsorption-desorption, X-ray diffraction, Fourier-transform infrared and Raman spectroscopies, and NH3 temperature-programmed desorption. It was demon-strated that Lewis acid sites were responsible for byproduct formation, and that Br?nsted acid sites of medium strength were the active sites for acrolein production by glycerol dehydration. The acid-ity of the supported CsPW was affected by the calcination temperature and CsPW loading. The CsPW was well dispersed on Nb2O5 at loadings£20 wt%, and the strong acid sites of bulk CsPW were converted to selective medium acid sites. The CsPW catalyst with 20%of CsPW loading cal-cined at 500 °C gave 96%of glycerol conversion and 80%of acrolein selectivity, and there was no significant deactivation in 10 h. The catalyst with a 20%decrease in activity was regenerated by simple coke burning with air at 500 °C.

参考文献

[1] 夏水鑫,郑丽萍,聂仁峰,陈平,楼辉,侯昭胤.由M0.02Cu0.4Mg5.6Al1.98(OH)16CO3(M=Ru,Re)水滑石为前驱体制备的双金属固体碱催化甘油氢解[J].催化学报,2013(05):986-992.
[2] 胡基业,刘晓钰,王彬,裴燕,乔明华,范康年.制备方法对Ni/ZnO催化丙三醇重整-氢解性能的影响[J].催化学报,2012(08):1266-1275,前插1.
[3] 胡基业,刘晓钰,范义秋,谢颂海,裴燕,乔明华,范康年,张晓昕,宗保宁.ZnO与骨架NiMo物理混合用于丙三醇催化重整-氢解制1,2-丙二醇[J].催化学报,2013(05):1020-1026.
[4] Katryniok B;Paul S;Belliere-Baca V;Rey P Dumeignil F .[J].Green Chemistry,2010,12:2079.
[5] 马继平,于维强,王敏,贾秀全,路芳,徐杰.催化选择转化多羟基化合物制备高附加值化学品研究进展[J].催化学报,2013(03):492-507.
[6] Chai S H;Wang H P;Liang Y;Xu B Q .[J].Green Chemistry,2007,9:1130.
[7] Chai S H;Wang H P;Liang Y;Xu B Q .[J].Journal of Catalysis,2007,250:342.
[8] Chai S H;Wang H P;Liang Y;Xu B Q .[J].Green Chemistry,2008,10:1087.
[9] Chai S H;Wang H P;Liang Y;Xu B Q .[J].Applied Catalysis A:General,2009,353:213.
[10] Shiju N R;Brown D R;Wilson K;Rothenberg G .[J].Topics in Catalysis,2010,53:1217.
[11] Tao L Z;Yan B;Liang Y;Xu B Q .[J].Green Chemistry,2013,15:696.
[12] Gu Y L;Liu S Z;Li C Y;Cui Q K .[J].Journal of Catalysis,2013,301:93.
[13] 宁丽丽,丁云杰,陈维苗,龚磊峰,林荣和,吕元,辛勤.活性炭担载硅钨酸催化甘油脱水制丙烯醛[J].催化学报,2008(03):212-214.
[14] Yang L;Joo J B;Kim Y J;Oh S Kim N D Yi J .[J].Korean Journal of Chemical Engineering,2008,25:1014.
[15] Ulgen A;Hoelderich W .[J].Catalysis Letters,2009,131:122.
[16] Kim Y T;Jung K D;Park E D .[J].Applied Catalysis A:General,2011,393:275.
[17] Cavani F;Guidetti S;Marinelli L;Piccinini M Ghedini E Signoretto M .[J].Applied Catalysis B:Environmental,2010,100:197.
[18] Kim Y T;Jung K D;Park E D .[J].Applied Catalysis B:Environmental,2011,107:177.
[19] Alhanash A;Kozhevnikova E F;Kozhevnikov I V .[J].Applied Catalysis A:General,2010,378:11.
[20] Misono M.[J].Chemistry Communications,2001:1141.
[21] Haider, M.H.;Dummer, N.F.;Zhang, D.;Miedziak, P.;Davies, T.E.;Taylor, S.H.;Willock, D.J.;Knight, D.W.;Chadwick, D.;Hutchings, G.J. .Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein[J].Journal of Catalysis,2012(1):206-213.
[22] Gao R H;Chen H;Le Y Y;Dai W L Fan K N .[J].Applied Catalysis A:General,2009,352:61.
[23] Okuhara T;Watanabe H;Nishimura T;Inumaru K Misono M .[J].CHEMISTRY OF MATERIALS,2000,12:2230.
[24] Tanabe K;Okazaki S .[J].Applied Catalysis A:General,1995,133:191.
[25] Lauriol-Garbey P;Postole G;Loridant S;Auroux A Belliere-Baca V Rey P Millet J M M .[J].Applied Catalysis B:Environmental,2011,106:94.
[26] Massa, M.;Andersson, A.;Finocchio, E.;Busca, G.;Lenrick, F.;Wallenberg, L.R..Performance of ZrO_2-supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein[J].Journal of Catalysis,2013:93-109.
[27] Nowak I;Ziolek M.[J].CHEMICAL REVIEWS,1999:3603.
[28] Omata K;Izumi S;Murayama T;Ueda W .[J].Catalysis Today,2013,201:7.
[29] Pizzio L R;Cáceres C V;Blanco M N .[J].Applied Catalysis A:General,1998,167:283.
[30] Jehng J M;Wachs I E .[J].ACS Symposium Series,1995,133:191.
[31] Ristic M;Popovic S;Music S .[J].Materials Letters,2004,58:2658.
[32] Lu S F;Wang D L;Jiang S P;Xiang Y Lu J L Zeng J .[J].Advanced Materials,2010,22:971.
[33] Izumi Y;Ono M;Kitagawa M;Yoshida M Urabe K .[J].Microporous Materials,1995,5:255.
[34] Alsalme, A.M.;Wiper, P.V.;Khimyak, Y.Z.;Kozhevnikova, E.F.;Kozhevnikov, I.V. .Solid acid catalysts based on H_3PW_(12)O_(40) heteropoly acid: Acid and catalytic properties at a gas-solid interface[J].Journal of Catalysis,2010(1):181-189.
[35] Kamiya Y;Okuhara T;Misono M;Miyaji A Tsuji K Nakajo T .[J].Catal Surv from Asia,2008,12:101.
[36] Tang Z C;Yu D H;Sun P;Li H Huang H .[J].Bulletin of the Korean Chemical Society,2010,31:3679.
[37] Shen L Q;Feng Y H;Yin H B;Wang A L Yu L B Jiang T S Shen Y T Wu Z A .[J].Journal of Industrial and Engineering Chemistry,2011,17:484.
[38] Ulgen A;Hoelderich W F .[J].Applied Catalysis A:General,2011,400:34.
[39] Devassy B M;Halligudi S B .[J].J Mol Cat A,2006,253:8.
[40] Thouvenot R;Fournier M;Franck R;Rocchiccioli-Deltcheff C .[J].Inorganic Chemistry,1984,23:598.
[41] Martin C;Solana G;Malet P;Rives V .[J].Catalysis Today,2003,78:365.
[42] Atia H;Armbruster U;Martin A .[J].Applied Catalysis A:General,2011,393:331.
[43] de Oliveira A S;Vasconcelos S J S;de Sousa J R;de Sousa F F Filho J M Oliveira A C .[J].CHEMICAL ENGINEERING JOURNAL,2011,168:765.
[44] Lauriol-Garbey P;Millet J M M;Loridant S;Belliere-Baca V Rey P .[J].Journal of Catalysis,2011,281:3612.
[45] Gu Y L;Liu S Z;Li C Y;Cui Q K .[J].Journal of Catalysis,2013,301:93.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%