欢迎登录材料期刊网

材料期刊网

高级检索

采用程序升温脱附方法研究了甲醇分子吸附在真空退火后的二氧化钛(110)表面的光催化过程,对比分析了单独吸附甲醇分子以及甲醇分子与水分子共吸附情况下的光催化解离过程。结果表明,在二氧化钛(110)表面吸附的甲醇分子对共吸附水分子的光催化解离过程并没有直接的帮助作用。共吸附状态下的水分子也同样没有影响到甲醇的光致解离过程,但是水分子的存在抑制了甲醇光解产物甲醛的光致脱附过程,同时促进了甲酸甲酯的形成。

We have performed a surface photocatalysis study of the molecularly adsorbed forms of methanol on a vacuum-annealed rutile TiO2(110)-(1 × 1) surface using temperature-programmed desorption both with and without coadsorbed water to investigate the effect of water and methanol on the photocatalytic dissociation of each other on rutile TiO2(110)-(1 × 1). Our experimental results show conclusively that methanol has no effect on photocatalytic water splitting with water covered rutile TiO2(110)-(1 × 1) surface. Further experimental results also show that water does not affect the process of photocatalytic methanol dissociation but does suppress photo-induced desorption of the formaldehyde product of methanol photocatalysis and can enhance the formation of the methyl formate product.

参考文献

[1] Fujishima A;Honda K .[J].NATURE,1972,238:37.
[2] Fox M A;Dulay M T .[J].CHEMICAL REVIEWS,1993,93:341.
[3] Linsebigler A L;Lu G;Yates J T Jr .[J].CHEMICAL REVIEWS,1995,95:735.
[4] Khan S U M;Al-Shahry M;Ingler W B Jr .[J].SCIENCE,2002,297:2243.
[5] 米倩,陈带全,胡军成,黄正喜,李金林.氮掺杂石墨烯负载的硫化镉空心球纳米复合材料的光催化性能[J].催化学报,2013(11):2138-2145.
[6] Kamat P V .[J].CHEMICAL REVIEWS,1993,93:267.
[7] Henderson M A .[J].Surface Science Reports,2011,66:185.
[8] Hoffmann M R;Martin S T;Choi W;Bahnemann D W .[J].CHEMICAL REVIEWS,1995,95:69.
[9] 陈晓芳,张佳,霍宇凝,李和兴.三维有序大孔CdS/TiO2薄膜的制备及其可见光催化性能[J].催化学报,2013(05):949-955.
[10] Sato S;White J M .[J].CHEMICAL PHYSICS LETTERS,1980,72:83.
[11] Kawai T;Sakata T.[J].Journal of the Chemical Society Chemical Communications,1980:694.
[12] Bates S P;Gillan M J;Kresse G .[J].Journal of Physical Chemistry B,1998,102:2017.
[13] Henderson M A;Otero-Tapia S;Castro M E .[J].FARADAY DISCUSSIONS,1999,114:313.
[14] Pang C L;Lindsay R;Thornton G .[J].CHEMICAL SOCIETY REVIEWS,2008,37:2328.
[15] Farfan-Arribas E;Madix R J .[J].Surface Science,2003,544:241.
[16] De Armas R S;Oviedo J;San Miguel M A;Sanz J F .[J].J Phys Chem C,2007,111:10023.
[17] Oviedo J;De Armas R S;San Miguel M A;Sanz J F .[J].J Phys Chem C,2008,112:17737.
[18] Sánchez V M;Cojulun J A;Scherlis D A .[J].J Phys Chem C,2010,114:11522.
[19] Zhao J;Yang J L;Petek H .[J].Physical Review B:Condensed Matter,2009,80:235416.
[20] Wong G S;Kragten D D;Vohs J M .[J].Journal of Physical Chemistry B,2001,105:1366.
[21] Shen M;Henderson M A .[J].J Phys Chem Lett,2011,2:2707.
[22] Ahmed A Y;Kandiel T A;Oekermann T;Bahnemann D .[J].J Phys Chem Lett,2011,2:2461.
[23] Zhang Z;Bondarchuk O;White J M;Kay B D Dohnalek Z .[J].Journal of the American Chemical Society,2006,128:4198.
[24] Onda K;Li B;Zhao J;Petek H .[J].Surf Sc,2005,593:32.
[25] Li B;Zhao J;Onda K;Jordan KD;Yang J;Petek H .Ultrafast interfacial proton-coupled electron transfer.[J].Science,2006(5766):1436-1440.
[26] Zhou C Y;Ren Z F;Tan S J;Ma Z B Mao X C Dai D X Fan H J Yang X M LaRue J Cooper R Wodtke A M Wang Z Li Z Y Wang B Yang J L Hou J G .[J].Chem Sci,2010,1:575.
[27] Guo, Q.;Xu, C.;Ren, Z.;Yang, W.;Ma, Z.;Dai, D.;Fan, H.;Minton, T.K.;Yang, X. .Stepwise photocatalytic dissociation of methanol and water on TiO _2(110)[J].Journal of the American Chemical Society,2012(32):13366-13373.
[28] Yuan, Q.;Wu, Z.;Jin, Y.;Xu, L.;Xiong, F.;Ma, Y.;Huang, W. .Photocatalytic cross-coupling of methanol and formaldehyde on a rutile TiO_2(110) surface[J].Journal of the American Chemical Society,2013(13):5212-5219.
[29] Guo Q;Xu C B;Yang W S;Ren Z F Ma Z B Dai D X Minton T K Yang X M .[J].J Phys Chem C,2013,117:5293.
[30] Chiarello, G.L.;Aguirre, M.H.;Selli, E. .Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO_2[J].Journal of Catalysis,2010(2):182-190.
[31] Kimmel G A;Baer M;Petrik N G;VandeVondele J Rousseau R Mundy C J .[J].J Phys Chem Lett,2012,3:778.
[32] Lee J;Sorescu D C;Deng X;Jordan K D .[J].J Phys Chem Lett,2013,4:53.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%