欢迎登录材料期刊网

材料期刊网

高级检索

Haber-Bosch发明的氨合成催化剂创立已经100周年。介绍了氨合成催化剂在理论和实践方面的发展、成就及其启迪,展望了氨合成催化剂的未来和面临的新挑战。催化合成氨技术在20世纪化学工业的发展中起着核心的作用。一个世纪以来,氨合成催化剂经历了Fe3O4基熔铁催化剂、Fe1-xO基熔铁催化剂、Ru基催化剂等发展阶段,以及钴钼双金属氮化物催化剂的发现。实践表明,氨合成催化剂是多相催化领域中许多基础研究的起点和试金石,没有别的反应象氨合成反应一样,能够把理论、模型催化剂和实验连接起来。催化合成氨反应仍然是多相催化理论研究的一个理想的模型体系。理解该反应机理并转换成完美技术成为催化研究领域发展的基本标准。这个永不结束的故事仍然没有结束。除了关于反应的基本步骤、真实结构、亚氮化物这些问题之外,催化合成氨在理论上一个新的挑战是关于在室温和常压下氨合成的预测,包括电催化合成氨、光催化合成氨和化学模拟生物固氮以及包括氮分子在内的催化化学研究中几种最稳定的小分子的活化方法等。

Ammonia synthesis catalyst found by Haber-Bosch achieves its history of 100 years. The current understanding and enlightenment from foundation and development of ammonia synthesis catalyst are reviewed, and its future and facing new challenge remained today are expected. Catalytic ammo-nia synthesis technology has played a central role in the development of the chemical industry dur-ing the 20th century. During 100 years, ammonia synthesis catalyst has come through diversified seedtime such as Fe3O4-based iron catalysts, Fe1-xO-based iron catalysts, ruthenium-based catalysts, and discovery of a Co-Mo-N system. Often new techniques, methods, and theories of catalysis have initially been developed and applied in connection with studies of this system. Similarly, new discov-eries in the field of ammonia synthesis have been extended to other fields of catalysis. There is no other practically relevant reaction that leads to such a close interconnection between theory, model catalysis, and experiment as the high-pressure synthesis of ammonia. Catalytic synthesis ammonia reaction is yet a perfect model system for academic research in the field of heterogeneous catalysis. Understanding the mechanism and the translation of the knowledge into technical perfection has become a fundamental criterion for scientific development in catalysis research. The never-ending story has not ended yet. In addition to questions about the elementary steps of the reaction and the importance of the real structure and subnitrides for the catalyst efficiency, as well as the wide-open question about new catalyst materials, there are also different challenges thrown down by theory for the experimentalist in the prediction of a biomimetic ammonia-synthesis path at room temperature and atmospheric pressure including electrocatalysis, photocatalysis and biomimetic nitrogen fixa-tion.

参考文献

[1] Timm B.[A].Weinheim:Verlag GmbH & Co.KGaA,1984:I-7.
[2] 胡效东.[A].广州:华南理工大学,2010
[3] 浙江化工学院 .[J].化肥与催化,1979,1:1.
[4] 向德辉;刘惠云.化肥催化剂实用手册[M].北京:化学工业出版社,1992:226.
[5] 魏可镁;王榕;陈振宙;叶炳火 郑起 俞秀金.[J].化肥工业),1985(03):10.
[6] 魏可镁,俞秀金,王榕,林建新,魏明灯.A202型低温氨合成催化剂的研究[J].工业催化,1995(03):14.
[7] 林维明;黄传荣;甘世凡;曹柏林 黎智萍 钟慧斌.[J].广东化工),1984(02):6.
[8] Figurski M J;Arabczyk W;Lendzion-Bielun Z;Kaleńczuk R J Lenart S .[J].Applied Catalysis A:General,2003,247:9.
[9] Pelka R;Kielbasa K;Arabczyk W .[J].CENTRAL EUROPEAN JOURNAL OF CHEMISTRY,2011,9:240.
[10] Lendzion-Bielun Z;Jedrzejewski R;Ekiert E;Arabczyk W .[J].Applied Catalysis A:General,2011,400:48.
[11] 俞秀金;林炳裕;林建新;王榕 魏可镁 .[J].稀土学报,2008,26:711.
[12] Zheng Y F;Liu H Z;Liu Z J;Li X N .[J].Journal of Solid State Chemistry,2009,182:2385.
[13] Schl?gl R .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2003,42:2004.
[14] Pernicone N;Ferrero F;Rossetti I;Forni L Canton P Riello P Fagherazzi G Signoretto M Pinna F .[J].Applied Catalysis A:General,2003,251:121.
[15] 沈浚.化肥工学丛书-合成氨[M].北京:化学工业出版社,2001:49.
[16] Liu H Z;Li X N .[J].Sci China(Ser B),1995,38:529.
[17] Liu H Z;Li X N;Hu Z N .[J].Applied Catalysis A:General,1996,142:209.
[18] Liu H Z;Li X N .[J].Industrial and Engineering Chemistry Research,1997,36:335.
[19] Liu H Z;Li X N .[J].Studies in surface science and catalysis,2000,130:2207.
[20] Guan S;Liu H Z .[J].Industrial and Engineering Chemistry Research,2000,39:2891.
[21] Liu H Z;Liu C B;Li X N;Cen Y Q .[J].Industrial and Engineering Chemistry Research,2003,42:1347.
[22] Lendzion-Bielun Z;Arabczyk W;Figurski M .[J].Applied Catalysis A:General,2002,227:255.
[23] Pernicone N .[J].CATTECH,2003,7:196.
[24] Liu H Z.Ammonia Synthesis Catalysts:Innovation and Practice[M].Singapore:World Sci Publishing Co.Ltd,2013
[25] Ozaki A;Aika K;Andersen J R;Boudart M.Catalysis,Science and Technology[M].Heidelberg:Springer-Verlag,1985:88.
[26] Bielawa H;Hinrichsen O;Birkner A;Muhler M .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2001,40:1061.
[27] Sudo M;Ichikawa M;Soma M;Onishi T Tamaru K .[J].Journal of Physical Chemistry,1969,73:1174.
[28] Aika K;Hori H;Ozaki A .[J].Journal of Catalysis,1972,27:424.
[29] 王晓南,朱虹,夏伟琴,刘化章.活性炭负载钌基氨合成催化剂的制备和催化活性[J].催化学报,2000(03):276-278.
[30] Liang C H;Wei Z B;Xin Q;Li C .[J].Applied Catalysis A:General,2001,208:193.
[31] 王丽华,林贻基,江剑,陈鸿博,林银钟,陈守正,廖代伟.载体和钌含量对合成氨催化活性的影响[J].厦门大学学报(自然科学版),1999(01):148-151.
[32] 刘广臻,郑晓玲,许交兴,魏可镁.活性炭载体预处理对Ru/C氨合成催化剂活性的影响[J].工业催化,2004(06):44-47.
[33] Forni L;Molinari D;Rossetti I;Pernicone N .[J].Applied Catalysis A:General,1999,185:269.
[34] Rossetti I;Pernicone N;Forni L .[J].Applied Catalysis A:General,2001,208:271.
[35] Brown D E;Edmonds T;Joyner R W;McCarroll J J Tennison S R .[J].Catalysis Letters,2014,144:545.
[36] Jacobsen C J H;Dahl S;Clausen B S;Bahn S Logadottir A N?rskov J K .[J].Journal of the American Chemical Society,2001,123:8404.
[37] Kojima R.;Aika K. .Molybdenum nitride and carbide catalysts for ammonia synthesis[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2001(1/2):141-147.
[38] Kojima R;Aika K .[J].Applied Catalysis A:General,2001,219:157.
[39] Kojima R;Aika K .[J].Applied Catalysis A:General,2001,218:121.
[40] Kojima R;Aika K .[J].Applied Catalysis A:General,2001,215:149.
[41] Kojima R;Aika K.[J].CHEMISTRY LETTERS,2000:514.
[42] Kojima R;Aika K .[J].Applied Catalysis A:General,2001,209:317.
[43] Kojima R;Aika K.[J].CHEMISTRY LETTERS,2000:912.
[44] Ertl G .[J].Journal of Vacuum Science and Technology A:Vacuum Surfaces and Films,1983,1:1247.
[45] Strongin D R;Carrazza J;Bare S R;Somorjai G A .[J].Journal of Catalysis,1987,103:213.
[46] Logadottir A;Rod T H;Norskov J K;Hammer B Dahl S Jacobsen C J H .[J].Journal of Catalysis,2001,197:229.
[47] Jacobsen C J H.[J].Chemistry Communications,2000:1057.
[48] Thomas J M;Zamaraev K I .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,1994,33:308.
[49] 郑启富 .[D].杭州:浙江工业大学,2012.
[50] Hecht D .[J].DRUG DEVELOPMENT RESEARCH,2011,72:53.
[51] Horiguchi J;Kobayashi S;Yamazaki Y;Nakanishi T Itabashi D Omata K Yamada M .[J].Applied Catalysis A:General,2010,377:9.
[52] Huang K.;Zhan XL.;Chen FQ.;Lu DW. .Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm[J].Chemical Engineering Science,2003(1):81-87.
[53] Aparicio L M;Dumesic J A .[J].Topics in Catalysis,1994,1:233.
[54] Boudart M .[J].Topics in Catalysis,1994,1:405.
[55] Somorjai G A;Materer N .[J].Topics in Catalysis,1994,1:215.
[56] Tamaru K;Jennings J R.Catalytic Ammonia Synthesis[M].New York:Plenum Press,1991
[57] Rosenthal D .[J].Phys Status Solid A,2011,208:1217.
[58] Nielsen A.An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia.3rd Ed[M].Copenhagen:Jul Gjellerup’s Forlag,1968
[59] Anderson J R;Boudart M.Catalysis,Science and Technology[M].Ber-lin:Springer-Verlag,1983
[60] Jennings J R.Catalytic Ammonia Synthesis,Fundamental and Prac-tice[M].New York:Plenum Press,1991
[61] Aika K;Christiansen L.Ammonia Catalysis and Manufacture[M].Ber-lin:Springer-Verlag,1995
[62] Tops?e H;Boudart M;Norskov J K.Ammonia Synthesis and Be-yond[M].Amsterdam:Baltzer Sci Publishers,1994
[63] Jacobsen C J H;Dahl S;Hansen P L;T?rnqvist E Jensen L Tops?e H Prip D V M?enshaug P B Chorkendorff B .[J].Journal of Molecular Catalysis A:Chemical,2000,163:19.
[64] Boudart M;Djega-Mariadassou G.Kinetics of Heterogeneous Cat-alytic Reactions[M].Princeton:Priceton Univ Press,1984
[65] Alstrup I.;Ullmann S.;Chorkendorff I. .THE INTERACTION OF NITROGEN WITH THE (111) SURFACE OF IRON AT LOW AND AT ELEVATED PRESSURES[J].Journal of Catalysis,1997(2):217-234.
[66] 金涌;阿伦斯.资源·能源·环境·社会-循环经济科学工程原理[M].北京:化学工业出版社,2009
[67] SchlJgl R;Ertl G;KnJzinger H;Weitkamp J.Handbook of Heterogeneous Catalysis[M].Weinheim:Wiley-VCH,1997:1697.
[68] Holme B;Skaugset P;Tafto J .[J].Applied Catalysis A:General,1997,162:149.
[69] Jedynak A;Kowalczyk Z;Szmigiel D;Zielinski J .[J].Polish Journal of chemistry,2001,75:1801.
[70] Guan S;Lin H Z .[J].Industrial and Engineering Chemistry Research,2000,39:2891.
[71] Jacobsen C J H;Jiang J Z;Morup S;Clausen B S Topsoe H .[J].Catalysis Letters,1999,61:115.
[72] Yunusov S M;Kalyuzhnaya E S;Mahapatra H;Puri V K Likholobov V A Shur V B .[J].Journal of Molecular Catalysis A:Chemical,1999,139:219.
[73] 刘化章,李小年,铃木聪雄,大西隆一郎,市川胜.熔铁催化剂活性与其母体铁氧化物形态和组成的关系(Ⅱ)表面活性位和氨合成反应速率[J].化工学报,2000(04):462.
[74] Arabczyk W;Narkiewicz U;Moszynski D .[J].LANGMUIR,1999,15:5785.
[75] Arabczyk W;Narkiewicz U;Kalucki K .[J].VACUUM,1994,45:267.
[76] Silverman D C;Boudart M .[J].Journal of Catalysis,1982,77:208.
[77] Holme B.;Tafto J. .CRYSTALLITE SHAPE AND IRON LATTICE ORIENTATION IN THE AMMONIA SYNTHESIS CATALYST[J].Journal of Catalysis,1995(2):243-251.
[78] Arabczyk W;Narkiewicz U;Moszynski D .[J].Applied Catalysis A:General,1999,182:379.
[79] Herzog B;Herein D;SchliSgl R .[J].Applied Catalysis A:General,1996,141:71.
[80] Boudart M .[J].Topics in Catalysis,2000,13:147.
[81] 于遵宏;朱炳辰;沈才大.大型合成氨厂工艺过程分析[M].北京:中国石化出版社,1993
[82] 刘化章.合成氨工业:过去、现在和未来--合成氨工业创立100周年回顾、启迪和挑战[J].化工进展,2013(09):1995-2005.
[83] Leigh J .[J].Chemistry in Britain,2001,37:23.
[84] Dybkjaer I;Nielsen A.Ammonia,Catalysis and Manufacture[M].Heidelberg:Springer-Verlag,1995:199.
[85] Mittasch A .[J].Z Elektrochem Amgew Phys Chem,1930,36:569.
[86] Mittasch A .[J].ADVANCES IN CATALYSIS,1950,2:81.
[87] Marnellos G;Stoukides M .[J].SCIENCE,1998,282:98.
[88] 刘化章.合成氨工业节能减排的分析[J].化工进展,2011(06):1147-1157.
[89] Mizushima T;Matsumoto K;Ohkita H;Kakuta N .[J].Plasma Chemistry and Plasma Processing,2007,27:1.
[90] 原金海;仲学军;谭世语 .[J].化学工业与工程),2008,29(04):7.
[91] Carrasco E;Jiménez-Redondo M;Tanarro I;Herrero V J .[J].Physical Chemistry Chemical Physics,2011,13:19561.
[92] Kubota Y;Koga K;Ohno M;Hara T .[J].Plasma Fusion Res,2010,5:042.
[93] Yahya N;Puspitasari P;Noordin N H .[J].Defect Diffusion Forum,2013,334-335:329.
[94] 刘化章,胡樟能,李小年,岑亚青,傅冠平.A301催化剂等压合成氨的可行性[J].化工学报,2001(12):1063-1067.
[95] Por E;Haase G;Citri O;Kosloff R Asscher M .[J].CHEMICAL PHYSICS LETTERS,1991,188:553.
[96] Katz G.;Kosloff R. .TEMPERATURE DEPENDENCE OF NITROGEN DISSOCIATION ON METAL SURFACES[J].The Journal of Chemical Physics,1995(21):9475-9481.
[97] Vandervell H D;Vaugh K C .[J].CHEMICAL PHYSICS LETTERS,1990,171:462.
[98] Ertl G .[J].Catalysis Reviews-Science and Engineering,1980,21:201.
[99] Ertl G .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2008,47:3524.
[100] Rappe A K;Goddard W A;Truhlar D G.Potential Energy Surfaces and Dynamics Calculations[M].New York:Plenum,1981:661.
[101] Mortensen J.J.;Hansen L.B.;Hammer B. .Nitrogen Adsorption and Dissociation on Fe(111)[J].Journal of Catalysis,1999(2):479-488.
[102] Shen H B;Liao Y Y;Zhang H B;Tsai K R .[J].Chinese Chemical Letters,1993,4:457.
[103] Zhang H B;Schrader G L .[J].Journal of Catalysis,1986,99:461.
[104] Spencer M S .[J].Catalysis Letters,1992,13:45.
[105] Seiyama T;Tanabe K.[A].Nitrogen Fixation.Tokyo,1980
[106] Bowker W .[J].Topics in Catalysis,1994,1:265.
[107] 孙杰,许猛,廖代伟.基于反应能量学的多相催化反应分子设计系统[J].计算机与应用化学,2004(02):245-248.
[108] 黑美军.氨合成反应的BOC-MP法研究[J].厦门大学学报,1997(06):879.
[109] 林敬东,廖代伟,张鸿斌,万惠霖,蔡启瑞.钌基和铁基催化剂上氨合成催化反应的氘反同位素效应[J].催化学报,2010(02):153-155.
[110] Enomoto S;Horiuti J .[J].J Res Inst Catal(Hokkaido Univ),1953,2:87.
[111] Enomoto S;Horiuti J .[J].J Res Inst Catal(Hokkaido Univ),1954,3:185.
[112] Tanaka K .[J].J Res Inst Catal(Hokkaido Univ),1966,13:119.
[113] 刘化章.氨合成催化剂-实践与理论[M].北京:化学工业出版社,2007
[114] Rod TH.;Norskov JK.;Logadottir A. .Ammonia synthesis at low temperatures[J].The Journal of Chemical Physics,2000(12):5343-5347.
[115] 张树永.[J].化学通报,2001:c01005.
[116] Skulason E;Bligaard T;Gudmundsdottir S;Studt F Rossmeisl J Abild-Pedersen F Vegge T Jonsson H Norskov J K .[J].Physical Chemistry Chemical Physics,2012,14:1235.
[117] 崔银仓,刘瑞泉.LSCCF粉体在低温常压电化学合成氨中的阴极催化性能[J].新疆大学学报(自然科学版),2010(04):473-477.
[118] Neurock M.[A].Munich,Germany,2012
[119] Murakami T;Nohira T;Ogata Y H;Ito Y .[J].Electrochemical and Solid State Letters,2005,8:E1.
[120] Yiokari C G;Pitselis G E;Polydoros D G;Katsaounis A D Vayenas C G .[J].Journal of Physical Chemistry A,2000,104:10600.
[121] Malato S.[A].Munich,Germany,2012
[122] Deisenhofer J;Epp O;Miki K;Huber R Michel H .[J].NATURE,1986,318:618.
[123] Michel H;Epp O;Deisenhofer J .[J].EMBO Journal,1986,5:2445.
[124] Herrmann J.[A].Mu-nich,Germany,2012
[125] Maeda K.[A].Munich,Germany,2012
[126] Xu H B;Yang W S;Guo Q;Dai D X Chen M D Yang X M .[J].Journal of the American Chemical Society,2013,135:10206.
[127] Yamauchi, M.;Abe, R.;Tsukuda, T.;Kato, K.;Takata, M. .Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2[J].Journal of the American Chemical Society,2011(5):1150-1152.
[128] Noda Y;Lee B;Domen K;Kondo J N .[J].CHEMISTRY OF MATERIALS,2008,20:5361.
[129] Rao N N;Dube S;Manjubala;Natarajan P .[J].Applied Catalysis B:Environmental,1994,5:33.
[130] Ileperuma O A;Tennakone K;Dissanayake W D D P .[J].Applied Catalysis,1990,62:L1.
[131] Schrauzer G N;Guth T D .[J].Journal of the American Chemical Society,1977,99:7189.
[132] Yamauchi M;Abe R .[P].EP Patent 2 474 356 A1,2012.
[133] Domen K.[A].Munich,Germany,2012
[134] Li C.[A].Munich,Ger-many,2012
[135] Periana R.[A].Munich,Germany,2012
[136] 吉林大学化学系固氮小组.化学模拟生物固氮进展[M].北京:科学出版社,1973
[137] 中国科学院福建物质结构研究所固氮研究小组.化学模拟生物固氮进展[M].北京:科学出版社,1976
[138] 周泰锦.固氮酶活性中心模型的EHMO研究[J].厦门大学学报,1987(02):195.
[139] 王友绍,李季伦.固氮酶催化机制及化学模拟生物固氮研究进展[J].自然科学进展,2000(06):481-490.
[140] Kim J;Rees D C .[J].NATURE,1992,360:553.
[141] Kim J;Rees D C .[J].SCIENCE,1992,257:1677.
[142] Howard J B;Rees D C .[J].Proceedings of the National Academy of Sciences(USA),2006,103:17088.
[143] Rees DC;Tezcan FA;Haynes CA;Walton MY;Andrade S;Einsle O;Howard JB .Structural basis of biological nitrogen fixation[J].Philosophical transactions of the Royal Society. Mathematical, physical, and engineering sciences,2005(1829):971-984.
[144] Hamilton, T.L.;Lange, R.K.;Boyd, E.S.;Peters, J.W. .Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming[J].Environmental microbiology,2011(8):2204-2215.
[145] Cheng Q .[J].J Integrative Plant Biology,2008,50:786.
[146] Tuczek F .[J].Nachrichten aus der Chem,2006,54:1190.
[147] de Matos Nogueira E;Olivares F L;Japiassu J C;Vilar C Vinagre F Baldani J I Silva Hemerly A .[J].Plant Science,2005,169:819.
[148] Studt F;Tuczek F .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2005,44:5639.
[149] Dixon R;Kahn D .[J].Nature Rev Microbiol,2004,2:621.
[150] Gehring C;Vlek P L G .Limitations of the 15N natural abundance method for estimating biological nitrogen fixation in Amazonian forest legumes.[J].Basic and Applied Ecology,2004(6):567-580.
[151] Vinther FP .Biological nitrogen fixation in grass-clover affected by animal excreta[J].Plant and Soil,1998(2):207-215.
[152] Reetz M T.[A].Munich,Germany,2012
[153] 王庭富.21世纪合成氨的展望[J].化工进展,2001(08):6-8.
[154] 伍宏业.氮肥工业与21世纪的生物能源[J].化工设计,2002(04):3-5,8.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%