欢迎登录材料期刊网

材料期刊网

高级检索

采用表面活性剂辅助共沉淀法制备了Ni-Mg-Al固体碱催化剂并用于CH4-CO2重整反应,探讨了表面活性剂对Ni(111), Ni(200)晶面的择优取向作用,在800°C下比较了不同表面活性剂制备的催化剂的催化性能,详细考察了CTAB制备的催化剂CB-LDO在不同反应温度下的催化活性和稳定性。采用红外光谱、X射线衍射、程序升温还原、X射线光电子能谱、高分辨透射电镜和程序升温氧化等表征手段分析了催化剂的活性、稳定性和失活原因。结果表明,四丙基氢氧化铵(TPAOH)促进Ni(200)的生长,而聚氧乙烯-聚氧丙烯-聚氧乙烯(P123)、聚乙烯吡咯烷酮(PVP)和十六烷基三甲基溴化铵(CTAB)抑制Ni(200)晶面的生长;Ni(200)的结晶程度对CH4的活化起到关键的作用,催化剂CB-LDO在高温下反应会发生晶型的转化, Ni(200)晶面由于反应过程中生成NiAl2O4尖晶石而得到缓慢释放,使催化剂的活性得以维持较高的水平。

Ni‐Mg‐Al solid basic catalysts for CO2 reforming of CH4 were prepared using a surfactant‐assisted coprecipitation method. The preferred orientations of the surfactants on the Ni(111) and Ni(200) crystal planes were investigated. The catalytic performance of the surfactant‐modified catalysts was tested at 800 °C. The cetyltrimethylammonium bromide (CTAB)‐modified catalyst (CB‐LDO;LDO=layered double oxide) was further studied at various reaction temperatures. All the catalysts were characterized using Fourier‐transform infrared spectroscopy, X‐ray diffraction, temperature‐pro‐grammed reduction, X‐ray photoelectron spectroscopy, high‐resolution transmission electron mi‐croscopy, and temperature‐programmed oxidation. The results show that growth of the Ni(200) plane is promoted by tetrapropylammonium hydroxide and restrained by P123, PVP, and CTAB. The crystallinity degree of Ni(200) plays a key role in the activation of CH4. The CB‐LDO catalysts retain high activities and stabilities, because of the crystal phase transformation at high tempera‐ture during the reaction;this leads to the formation of spinel NiAl2O4 and exposure of the Ni(200) crystal plane.

参考文献

[1] 瑙莫汗;付晓娟;雷艳秋;苏海全 .[J].催化学报,2014,34:379.
[2] Xu L L;Song H L;Chou L J .[J].Applied Catalysis B:Environmental,2011,108-109:177.
[3] Zhang X Q;Wang N;Xu Y;Yin Y X Shang S Y .[J].CATALYSIS COMMUNICATIONS,2014,45:11.
[4] 沈朝峰 .[D].太原:太原理工大学,2013.
[5] Forano C;Hibino T;Leroux F;Taviot-Guého C .[J].Developments in Clay Science,2006,1:1021.
[6] 任世彪,宏志,曹先中,王知彩,雷智平,潘春秀,康士刚,水恒福.有机改性对粘土负载镍催化剂的促进作用及其萘加氢性能[J].催化学报,2014(04):546-552.
[7] 相国磊,王训.纳米晶核的尺寸与表面对生长与组装过程影响的研究进展[J].无机化学学报,2011(12):2323-2331.
[8] Li Y;Shen W J .[J].Sci Chin Chem,2012,55:2485.
[9] 胡全红,黎先财,杨爱军,杨春燕.BaTiO3-BaAl2O4-Al2O3 复合载体的制备、表征及其 Ni 基催化剂催化 CH4/CO2 重整反应性能[J].催化学报,2012(03):563-569.
[10] Rives V. .Characterisation of layered double hydroxides and their decomposition products[J].Materials Chemistry and Physics,2002(1/3):19-25.
[11] 高鹏;李枫;赵宁;王慧, 魏伟, 孙予罕.[J].物理化学学报,2014
[12] Djebarri B;Gonzalez-Delacruz V M;Halliche D;Bachari K Saadi A Caballero A Holgado J P Cherifi O .[J].Reac Kinet Mech Catal,2014,111:259.
[13] Zaghouane-Boudiaf H;Boutahala M;Arab L .[J].CHEMICAL ENGINEERING JOURNAL,2012,187:142.
[14] Li D L;Atake I;Shishido T;Oumi Y Sano T Takehira K .[J].Journal of Catalysis,2007,250:299.
[15] Nam H S;Hwang N M;Yu B D;Yoon J K .[J].Physical Review Letters,2002,89:275502.
[16] Shen X J;Yang J P;Liu Y;Luo Y S Fu S Y .[J].New Journal of Chemistry,2011,35:1403.
[17] Li P W;Wang N;Wang R M.[J].European Journal of Inorganic Chemistry,2010:2261.
[18] Li J D;Croiset E;Ricardez-Sandoval L .[J].Journal of Molecular Catalysis A:Chemical,2012,365:103.
[19] Wang SG;Cao DB;Li YW;Wang JG;Hao HJ .CH4 dissociation on Ni surfaces: Density functional theory study[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2006(16):3226-3234.
[20] Wang Q S;Ren W;Yuan X L;Mu R M Song Z L Wang X L .[J].International Journal of Hydrogen Energy,2012,37:11488.
[21] Kumar P;Sun Y P;Idem R O .[J].Energy and Fuels,2008,22:3575.
[22] Xiao H P;Liu Z C;Zhou X G;Zhu K K .[J].CATALYSIS COMMUNICATIONS,2013,34:11.
[23] Bang Y J;Han S J;Yoo J K;Choi J H Kang K H Song J H Seo J G Jung J C Song I K .[J].International Journal of Hydrogen Energy,2013,38:8751.
[24] Dieuzeide M L;Iannibelli V;Jobbagy M;Amadeo N .[J].International Journal of Hydrogen Energy,2012,37:14926.
[25] Du X J;Zhang D S;Shi L Y;Gao R H Zhang J P .[J].Nanoscale,2013,5:2659.
[26] Mora M;Jimenez-Sanchidrian C;Ruiz JR .Heterogeneous Suzuki cross-coupling reactions over palladium/hydrotalcite catalysts[J].Journal of Colloid and Interface Science,2006(2):568-575.
[27] Lucrédio A F;Jerkiewickz G;Assaf E M .[J].Applied Catalysis A:General,2007,333:90.
[28] Wang Z T;Shao X;Larcher A;Xie K Dong D H Li C Z .[J].Catalysis Today,2013,216:44.
[29] Kang K M;Kim H W;Shim I W;Kwak H Y .[J].FUEL PROCESSING TECHNOLOGY,2011,92:1236.
[30] Ning F Y;Shao M F;Zhang C L;Xu S M Wei M Duan X .[J].Nano Ener-gy,2014,7:134.
[31] Hou J;Liu Z M;Lin G D;Zhang H B .[J].International Journal of Hydrogen Energy,2014,39:1315.
[32] Liu D P;Wang Y F;Shi D M;Jia X L Wang X Borgna A Lau R Yang Y H .[J].International Journal of Hydrogen Energy,2012,37:10135.
[33] Damyanova S;Pawelec B;Arishtirova K;Fierro J L G .[J].International Journal of Hydrogen Energy,2012,37:15966.
[34] Salam M A;Sufian S;Murugesan T .[J].Materials Chemistry and Physics,2013,142:213.
[35] Alvar E N;Rezaei M .[J].Scripta Materialia,2009,61:212.
[36] Hadian N;Rezaei M;Mosayebi Z;Meshkani F .[J].Journal of Natural Gas Chemistry,2012,21:200.
[37] Zhai X L;Ding S;Liu Z H;Jin Y Cheng Y .[J].International Journal of Hydrogen Energy,2011,36:482.
[38] 柏彧,龙冉,王成名,熊宇杰.以催化活性调控为导向的金属纳米结构可控合成[J].中国科学技术大学学报,2013(11):889-898.
[39] Chen Y G;Ren J .[J].Catalysis Letters,1994,29:39.
[40] Liu C J;Ye J Y;Jiang J J;Pan Y X .[J].ChemCatChem,2011,3:529.
[41] Zhu J Q;Peng X X;Yao L;Tong D M Hu C W .[J].Catal Sci Technol,2012,2:529.
[42] Wang N;Yu X P;Shen K;Chu W Qian W Z .[J].International Journal of Hydrogen Energy,2013,38:9718.
[43] Eltejaei H;Reza Bozorgzadeh H;Towfighi J;Reza Omidkhah M Rezaei M Zanganeh R Zamaniyan A Zarrin Ghalam A .[J].Int J Hy-drogen Energy,2012,37:4107.
[44] Koerts T;Van Santen R A.[J].Journal of the Chemical Society Chemical Communications,1991:1281.
[45] Shi C K;Zhang P .[J].Applied Catalysis B:Environmental,2012,115-116:190.
[46] Hao Z G;Zhu Q S;Jiang Z;Hou B L Li H Z .[J].FUEL PROCESSING TECHNOLOGY,2009,90:113.
[47] Zhang Z L;Verykios X E .[J].Catalysis Today,1994,21:589.
[48] Zhang H;Li M;Xiao P;Liu D Zou C J .[J].Chemical Engineering & Technology,2013,36:1701.
[49] Sun L Z;Tan Y S;Zhang Q D;Xie H J Song F Han Y Z .[J].International Journal of Hydrogen Energy,2013,38:1892.
[50] Long J W;Laskoski M;Keller T M;Pettigrew K A Zimmerman T N Qadri S B Peterson G W .[J].CARBON,2010,48:501.
[51] Tang S.;Lin J.;Zeng HC.;Tan KL.;Li K.;Ji L. .CO2 reforming of methane to synthesis gas over sol-gel-made Ni/gamma-Al2O3 catalysts from organometallic precursors[J].Journal of Catalysis,2000(2):424-430.
[52] Zhang J G;Wang H;Dalai Ajay K .[J].Applied Catalysis A:General,2008,339:121.
[53] Kroll VCH.;Mirodatos C.;Swaan HM. .METHANE REFORMING REACTION WITH CARBON DIOXIDE OVER NI/SIO2 CATALYST .1. DEACTIVATION STUDIES[J].Journal of Catalysis,1996(1):409-422.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%