欢迎登录材料期刊网

材料期刊网

高级检索

采用溶胶-凝胶法制备了一系列钒氧化物催化剂,并用于CO2氧化异丁烷脱氢反应.采用X射线衍射、低温N2吸附-脱附、O2程序升温氧化、程序升温表面反应和原位傅里叶变换红外光谱等方法研究了催化剂的性质.反应结果表明,尽管所有钒氧化物催化剂的丁烯选择性都大于85%,但随着催化剂组成和制备方法的改变,催化活性和稳定性差异显著.其中,12 wt% V2O5/Ce0.6Zr0.4O2(7 wt%)-Al2O3的催化活性最高,而6 wt% V2O5-Ce0.6Zr0.4O2(7 wt%)-Al2O3的稳定性最佳.关联分析催化反应结果与催化剂表征表明,钒氧化物的催化活性取决于VOx物种的结晶度和分散度,而催化剂表面所积重质焦炭的特性是决定催化剂稳定性的关键.非稳态反应和原位光谱结果确认, CO2氧化异丁烷脱氢遵循Mars-van Krevelen氧化还原机理.

Vanadia-based catalysts were prepared using the sol-gel method and were subjected to the oxida-tive dehydrogenation of isobutane with CO2. The materials were extensively characterized by using X-ray diffraction, N2 adsorption-desorption, O2-temperature programmed oxidation, temperature programmed surface reaction, and in situ Fourier transform infrared techniques. Catalytic results indicate that a high selectivity toward total C4 olefins over 85%was obtained over all of the cata-lysts. On the contrary, the highest conversion of isobutane was observed over 12 wt%V2O5/Ce0.6Zr0.4O2(7 wt%)-Al2O3, and a more stable performance was achieved over 6 wt%V2O5-Ce0.6Zr0.4O2(7 wt%)-Al2O3. The catalytic activity for the titled reaction was found to be de-pendent on the dispersion and crystallinity of the VOx species over the catalyst, and the deposition of the heavier coke over the catalyst was revealed to be the main reason for the catalyst deactiva-tion. Moreover, the benefit of CO2 toward the titled reaction was clearly revealed from TPSR results, and the reaction was confirmed to follow the redox mechanism.

参考文献

[1] Iannazzo V.;Neri G.;Galvagno S.;Di Serio M.;Tesser R.;Santacesaria E. .Oxidative dehydrogenation of isobutane over V2O5-based catalysts prepared by grafting vanadyl alkoxides on TiO2-SiO2 supports[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2003(1):49-68.
[2] Pozan G S;Tavman A;Boz I .[J].CHEMICAL ENGINEERING JOURNAL,2008,143:180.
[3] Wang G W;Li C Y;Shan H H.[J].ACS Catal,2014:1139.
[4] He M Y;Hu Z Q;Xiao B;Li J F Guo X J Luo S Y Yang F Feng Y Yang G J Liu S M .[J].International Journal of Hydrogen Energy,2009,34:195.
[5] Liang, CD;Xie, H;Schwartz, V;Howe, J;Dai, S;Overbury, SH .Open-Cage Fullerene-like Graphitic Carbons as Catalysts for Oxidative Dehydrogenation of Isobutane[J].Journal of the American Chemical Society,2009(22):7735-7741.
[6] Ovsitser, O.;Kondratenko, E.V. .Selective and stable iso-butene production over highly dispersed VO _x species on SiO_2 supports via combining oxidative and non-oxidative iso-butane dehydrogenation[J].Chemical communications,2010(27):4974-4976.
[7] Wang G Z;Zhang L;Deng J G;Dai H X He H Au C T .[J].Applied Catalysis A:General,2009,355:192.
[8] Ansari M B;Park S E .[J].Energy Environ Sci,2012,5:9419.
[9] Wang S B;Zhu Z H .[J].Energy and Fuels,2004,18:1126.
[10] Ajayi B P;Rabindran Jermy B;Abussaud B A;Al-Khattaf S .[J].Journal of Porous Materials,2013,20:1257.
[11] Ajayi B P;Jermy B R;Ogunronbi K E;Abussaud B A Al-Khattaf S .[J].Catalysis Today,2013,204:189.
[12] He X X;Fan C;Gu X Y;Zhou X G Chen D Zhu Y A .[J].Journal of Molecular Catalysis A:Chemical,2011,344:53.
[13] Michorczyk P;Pietrzyk P;Ogonowski J .[J].Microporous and Mesoporous Materials,2012,161:56.
[14] Nederlof C;Talay G;Kapteijn F;Makkee M .[J].Applied Catalysis A:General,2012,423-424:59.
[15] Raju G;Reddy B M;Abhishek B;Mo Y H Park S E .[J].Applied Catalysis A:General,2012,423-424:168.
[16] Rao R C;Zhang Q Y;Liu H D;Yang H X Ling Q Yang M Zhang A M Chen W .[J].Journal of Molecular Catalysis A:Chemical,2012,363-364:283.
[17] Shishido T;Shimamura K;Teramura K;Tanaka T .[J].Catalysis Today,2012,185:151.
[18] Wang Q;Li X H;Li W Y;Feng J .[J].CATALYSIS COMMUNICATIONS,2014,50:21.
[19] Wu R X;Xie P F;Cheng Y H;Yue Y H Gu S Y Yang W M Miao C X Hua W M Gao Z .[J].CATALYSIS COMMUNICATIONS,2013,39:20.
[20] Yan W;Kouk Q Y;Luo J Z;Liu Y Borgna A .[J].Cataly Commun,2014,46:208.
[21] Ding J F;Qin Z F;Li X K;Wang G F Wang J G .[J].Journal of Molecular Catalysis A:Chemical,2010,315:221.
[22] Ogonowski J;Skrzyńska E .[J].CATALYSIS COMMUNICATIONS,2009,11:132.
[23] Ogonowski J;Skrzyńska E .[J].Reaction Kinetics & Catalysis Letters,2006,88:293.
[24] Wang G Z;Dai H X;Zhang L;Deng J G Liu C X He H Au C T .[J].Applied Catalysis A:General,2010,375:272.
[25] Raju G;Reddy B M;Park S E .[J].J CO2 Utilization,2014,5:41.
[26] Reddy B M;Han D S;Jiang N Z;Park S E .[J].CATALYSIS SURVEYS FROM ASIA,2008,12:56.
[27] Coperet C .[J].CHEMICAL REVIEWS,2009,110:656.
[28] Takita Y;Sano K I;Muraya T;Nishiguchi H Kawata N Ito M Akbay T Ishihara T .[J].Applied Catalysis A:General,1998,170:23.
[29] Aouissi A;Aldhayan D;Alkahtani S .[J].催化学报,2012,33:1474.
[30] Chen M;Wu J L;Liu Y M;Cao Y Guo L He H Y Fan K N .[J].Applied Catalysis A:General,2011,407:20.
[31] Bi Y L;Zhen K J;Valenzuela R X;Jia M J Cortés Corberán V .[J].Catalysis Today,2000,61:369.
[32] Chen M;Xu J;Liu Y M;Cao Y He H Y Zhuang J H .[J].Applied Catalysis A:General,2010,377:35.
[33] Chen, M.;Xu, J.;Cao, Y.;He, H.-Y.;Fan, K.-N.;Zhuang, J.-H. .Dehydrogenation of propane over In_2O_3-Al _2O_3 mixed oxide in the presence of carbon dioxide[J].Journal of Catalysis,2010(1):101-108.
[34] Liu Z W;Wang C;Fan W B;Liu Z T Hao Q Q Long X Lu J Wang J G Qin Z F Su D S .[J].ChemSusChem,2011,4:341.
[35] Wang C;Fan W B;Liu Z T;Lu J Liu Z W Qin Z F Wang J G .[J].Journal of Molecular Catalysis A:Chemical,2010,329:64.
[36] Martínez-Huerta M V;Gao X;Tian H;Wachs I E Fierro J L G Ba-?ares M A .[J].Catalysis Today,2006,118:279.
[37] Wachs I E;Chen Y S;Jehng J M;Briand L E Tanaka T .[J].Catalysis Today,2003,78:13.
[38] Blanco S;Carrazán S R G;Rives V .[J].Applied Catalysis A:General,2008,342:93.
[39] Carniato F;Bisio C;Gatti G;Roncoroni S Recchia S Marchese L .[J].Catalysis Letters,2009,131:42.
[40] Cheng, CH;Lehmann, J;Thies, JE;Burton, SD;Engelhard, MH .Oxidation of black carbon by biotic and abiotic processes[J].Organic Geochemistry,2006(11):1477-1488.
[41] Sabio E;González E;González J F;Gonza?lez-Garc Ramiro A Ga?an J .[J].CARBON,2004,42(a C M):2285.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%