欢迎登录材料期刊网

材料期刊网

高级检索

以硝酸铜为原料,聚乙二醇(PEG, Mw=400)为稳定剂和模板剂,采用简单的低温水浴合成法成功合成了四针状氧化锌晶须(T-ZnOw)表面负载鳞片状CuO的纳米复合光催化剂,系统研究了复合催化剂样品的晶体结构和形貌,通过荧光发光光谱(PL)和紫外光照射的条件下样品对阳离子污染物(亚甲蓝, MB)和阴离子污染物(甲基橙, MO)的光催化降解效率表征了样品的光催化性能,同时采用ICP-AES详细分析了PEG 400浓度对T-ZnOw表面负载CuO纳米颗粒数量的影响.结果表明, T-ZnOw表面有序地沉积了大量鳞片状CuO纳米颗粒,随着PEG 400浓度增加, T-ZnOw表面沉积的CuO纳米片数量逐渐增多,且CuO纳米片在T-ZnOw表面的排列更加有序.同时, PEG 400浓度的变化对合成样品特征发光峰的强度也有一定影响,当PEG 400浓度小于0.60 mol/L时,合成样品特征发光峰强度随着PEG 400浓度增大而减小;当PEG 400浓度大于0.60 mol/L时,样品的特征发光峰强度随之有所增加.在紫外光照射条件下, CuO/T-ZnOw纳米复合催化剂样品对MB和MO水溶液的降解均表现出优异的光催化活性,当PEG 400浓度≤0.60 mol/L时,样品的光催化活性随着PEG 400浓度的增大而增加;而当PEG 400浓度大于0.60 mol/L时,样品的光催化活性反而有所降低.此外,在相同条件下,所有样品对MB水溶液的降解效率明显高于对MO水溶液的降解效率.

Scale‐like copper oxide (CuO)/tetrapod‐like ZnO whisker (T‐ZnOw) nanocomposites were fabri‐cated using poly(ethylene glycol) (PEG;Mw=400) as a soft template by a simple and environmen‐tally friendly method without the use of hydroxide reagents at low temperatures. The structures and morphologies of the samples were investigated in detail, and the photocatalytic properties of the samples were determined using photoluminescence (PL) detection and the photocatalytic deg‐radation of cationic pollutant (methylene blue, MB) and anionic pollutant (methyl orange, MO) aqueous solutions under ultraviolet (UV) irradiation. Large numbers of scale‐like CuO nanoparticles were deposited on the T‐ZnOw surfaces in an ordered fashion;the amount of scale‐like CuO nano‐particles increased, and the arrangement became more ordered with increasing PEG 400 content. The PL emission peak intensities of the samples changed with increasing PEG 400 content. All the CuO/T‐ZnOw nanocomposites showed excellent photocatalytic activities in the degradation of MB and MO aqueous solutions under UV irradiation when the PEG 400 concentration was less than or equal to 0.60 mol/L. The photocatalytic properties of the samples improved with increasing PEG400 concentration, but deteriorated when the PEG 400 concentration was increased further;this was reflected by the emission peak intensities in the PL spectra. The nanocomposites showed better efficiency for MB degradation than for MO degradation under the same conditions.

参考文献

[1] Schwitzgebel J;Ekerdt J G;Gerischer H;Heller A .[J].Journal of Physical Chemistry,1995,99:5633.
[2] Willner I;Eichen Y;Frank A J;Fox M A .[J].Journal of Physical Chemistry,1993,97:7264.
[3] Suzuki M;Ito T;Taga Y .[J].Applied Physics Letters,2001,78:3968.
[4] Gu, CD;Cheng, C;Huang, HY;Wong, TL;Wang, N;Zhang, TY .Growth and Photocatalytic Activity of Dendrite-like ZnO@Ag Heterostructure Nanocrystals[J].Crystal growth & design,2009(7):3278-3285.
[5] Khodja A A;Sehili T;Pilichowski J F;Boule P .[J].Journal of Photochemistry and Photobiology A:Chemistry,2001,141:231.
[6] Mansilla H D;Villasenor J;Maturana G;Baeza J Freer J Durán N .[J].Journal of Photochemistry and Photobiology A:Chemistry,1994,78:267.
[7] Ohnishi H;Matsumura M;Tsubomura H;Iwasaki M .[J].Industrial and Engineering Chemistry Research,1989,28:719.
[8] Xu X L;Duan X;Yi Z G;Zhou Z W Fan X M Wang Y .[J].CATALYSIS COMMUNICATIONS,2010,12:169.
[9] Yamaguchi Y;Yamazaki M;Yoshihara S;Shirakashi T .[J].Journal of Electroanalytical Chemistry,1998,442:1.
[10] Wan Q;Wang T H;Zhao J C .[J].Applied Physics Letters,2005,87:083105.
[11] Liu H;Wang J;Fan X M;Zhang F Z Liu H R Dai J Xiang F M .[J].MATERIALS SCIENCE & ENGINEERING B,2013,178:158.
[12] Xu C;Cao L X;Su G;Liu W Liu H Yu Y Q Qu X F .[J].Journal of Hazardous Materials,2010,176:807.
[13] Koffyberg F P;Benko F A .[J].Journal of Applied Physics,1982,53:1173.
[14] Wang L;Han K;Song G;Yang X Tao M.[A].,2006:130.
[15] Bennici S;Gervasini A .[J].Applied Catalysis B:Environmental,2006,62:336.
[16] Lo CH;Tsung TT;Chen LC;Su CH;Lin HM .Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS)[J].Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology,2005(2/3):313-320.
[17] Zhou KB;Wang RP;Xu BQ;Li YD .Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes[J].Nanotechnology,2006(15):3939-3943.
[18] Zhang C;Yin L W;Zhang L Y;Qi Y X Lun N .[J].Materials Letters,2012,67:303.
[19] Wei S Q;Chen Y Y;Ma Y Y;Shao Z C .[J].Journal of Molecular Catalysis A:Chemical,2010,331:112.
[20] Saravanan, R.;Karthikeyan, S.;Gupta, V.K.;Sekaran, G.;Narayanan, V.;Stephen, A. .Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2013(1):91-98.
[21] Liu Z L;Deng J C;Deng J J;Li F F .[J].MATERIALS SCIENCE & ENGINEERING B,2008,150:99.
[22] Li B X;Wang Y F .[J].SUPERLATTICES AND MICROSTRUCTURES,2010,47:615.
[23] Zhou Z W;Peng W M;Ke S Y;Deng H .[J].Journal of Materials Processing Technology,1999,89-90:415.
[24] Wu D Z;Fan X M;Tian K;Dai J Liu H R .[J].Trans Nonferr Metal Soc China,2012,22:1620.
[25] Jing LQ.;Sun XJ.;Shang J.;Cai WM.;Xu ZL. .The surface properties and photocatalytic activities of ZnO ultrafine particles[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2001(3/4):308-314.
[26] Ai Z H;Zhang L Z;Lee S C;Ho W K .[J].J Phys Chem C,2009,113:20896.
[27] Peng WQ;Qu SC;Cong GW;Wang ZG .Synthesis and structures of morphology-controlled ZnO nano- and microcrystals[J].Crystal growth & design,2006(6):1518-1522.
[28] Sakai, Y.;Ninomiya, S.;Hiraoka, K. .XPS depth analysis of CuO by electrospray droplet impact[J].Surface and Interface Analysis: SIA: An International Journal Devoted to the Development and Application of Techniques for the Analysis of Surfaces, Interfaces and Thin Films,2012(8):938-941.
[29] Wang W Z;Zhan Y J;Wang X S;Liu Y K Zheng C L Wang G H .[J].Mater Res Bul,2002,37:1093.
[30] Borgohain K;Murase N;Mahamuni S .[J].Journal of Applied Physics,2002,92:1292.
[31] Wang J;Fan X M;Wu D Z;Dai J Liu H Liu H R Zhou Z W .[J].Applied Surface Sinence,2011,258:1797.
[32] Shang M;Wang W Z;Zhou L;Sun S M Yin W Z .[J].Journal of Hazardous Materials,2009,172:338.
[33] Gupta J;Barick K C;Bahadur D .[J].Journal of Alloys and Compounds,2011,509:6725.
[34] Song L;Qiu R L;Mo Y Q;Zhang D D Wei H Xiong Y .[J].CATALYSIS COMMUNICATIONS,2007,8:429.
[35] Yang Z M;Zhang P;Ding Y H;Jiang Y Long Z L Dai W L .[J].Materials Research Bulletin,2011,46:1625.
[36] Fan XM;Lian JS;Guo ZX;Lu HJ .Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(111) substrates[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2005(2):176-181.
[37] Kansal S K;Singh M;Kaur M P;Sud D .[J].Indian Chem Engr Sect B,2005,47:111.
[38] Kansal S K;Singh M;Sud D .[J].Journal of Hazardous Materials,2007,141:581.
[39] Zhang Q;Jing Y H;Shiue A;Chang C T You W Y .[J].Adv Sci Lett,2012,18:213.
[40] Aissa A H;Puzenat E;Plassais A;Herrmann J M Haehnel C Guillard C .[J].Applied Catalysis B:Environmental,2011,107:1.
[41] Xia S J;Liu F X;Ni Z M;Shi W Xue J L Qian P P .[J].Applied Catalysis B:Environmental,2014,144:570.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%