欢迎登录材料期刊网

材料期刊网

高级检索

以聚乙烯醇(PEG)为结构导向剂,利用水热法合成了形貌可控的Ta2O5纳米柱.采用X射线衍射、扫描电镜、透射电镜、漫反射紫外-可见光谱和光致发光光谱对所制备样品进行了表征.考察了结晶时间和Ta2O5/Sr(OH)2摩尔比等合成参数对样品形貌的影响,并在此基础上对Ta2O5纳米粒可能的生长机理进行了推测.结果表明,在PEG和Sr(OH)2存在条件下可以合成形貌可控的Ta2O5纳米柱.研究了紫外光下Ta2O5纳米柱降解罗丹明B的光催化性能,发现Ta2O5的形貌对光催化性能有很大影响, Ta2O5纳米柱的光催化性能与其长度和直径比成线性关系.催化降解反应的表观速率常数最高可达0.156 min–1,且经多次循环使用后,样品仍然保持较高的催化性能.

Tantalum pentoxide (Ta2O5) nanorods were hydrothermally synthesized using polyethylene glycol (PEG) as a guiding agent. The nanorods were characterized by X‐ray diffraction, scanning and transmission electron microscopies, and diffuse reflectance ultraviolet‐visible and photolumines‐cence spectroscopies. The effects of crystallization duration and Ta2O5/Sr(OH)2 ratio on the product morphology were investigated, and a growth mechanism was proposed. Phase‐pure Ta2O5 nano‐rods with controlled morphology were formed in the presence of PEG and Sr(OH)2, which was nec‐essary to form the nanorods. Sr(OH)2 induced the surface dissolution and re‐growth of Ta2O5. PEG induced the anisotropic growth of Ta2O5 by acting as a capping agent. The products were used to photocatalytically degrade rhodamine B under ultraviolet irradiation. The catalytic activity directly correlated with the length‐diameter ratio of the Ta2O5 nanorods. A maximum apparent reaction rate constant of 0.156 min–1 was obtained. The Ta2O5 nanorods were stable during photocatalytic reac‐tion and could be recycled several times without loss of activity.

参考文献

[1] Li X;Zang J L .[J].J Phys Chem C,2009,113:19411.
[2] Hoffmann M R;Martin S T;Choi W;Bahnemann D W .[J].CHEMICAL REVIEWS,1995,95:69.
[3] Khan S U M;Al-Shahry M;Ingler W B Jr .[J].SCIENCE,2002,297:2243.
[4] Maeda K;Teramura K;Lu D;Takata T;Saito N;Inoue Y;Domen K .Photocatalyst releasing hydrogen from water.[J].Nature,2006(7082):295-0.
[5] Chueh Y L;Chou L J;Wang Z L .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2006,45:7773.
[6] Zhang J Y;Bie L J;Dusastre V;Boyd I W .[J].THIN SOLID FILMS,1998,318:252.
[7] Ezhilvalavan S;Tseng T Y .[J].J Mater Sci Mater Electron,1999,10:9.
[8] Zhu Y F;Yu F;Man Y;Tian Q Y He Y Wu N Z .[J].Journal of Solid State Chemistry,2005,178:224.
[9] Li, P.;Stender, C.L.;Ringe, E.;Marks, L.D.;Odom, T.W. .Synthesis of TaS_2 nanotubes from Ta_2O_5 nanotube templates[J].Small,2010(10):1096-1099.
[10] Wang Y;Cui Z L;Zhang Z K .[J].Materials Letters,2004,58:3017.
[11] Pyatenko A;Yamaguchi M;Suzuki M .Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2007(22):7910-7917.
[12] Jia C J;Sun L D;You L P;Jiang X C Luo F Pang Y C Yan C H .[J].Journal of Physical Chemistry B,2005,109:3284.
[13] Chen D H;Huang F Z;Cheng Y B;Caruso R A .[J].Advanced Materials,2009,21:2206.
[14] Peng X G;Manna L;Yang W D;Wickham J Scher E Kadavanich A Alivisatos A P .[J].NATURE,2000,404:59.
[15] Morales A M;Lieber C M .[J].SCIENCE,1998,279:208.
[16] Manna L.;Alivisatos AP.;Scher EC. .Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals[J].Journal of the American Chemical Society,2000(51):12700-12706.
[17] Holmes J D;Johnston K P;Doty R C;Korgel B A .[J].SCIENCE,2000,287:1471.
[18] Gudiksen MS.;Lieber CM. .Diameter-selective synthesis of semiconductor nanowires[J].Journal of the American Chemical Society,2000(36):8801-8802.
[19] Park SJ.;Lee S.;Khim ZG.;Char K.;Hyeon T.;Kim S. .Synthesis and magnetic studies of uniform iron nanorods and nanospheres[J].Journal of the American Chemical Society,2000(35):8581-8582.
[20] Puntes V F;Krishnan K M;Alivisatos A P .[J].SCIENCE,2001,291:2115.
[21] Thurn-Albrecht T;Schotter J;K?stle G A;Emley N Shibauchi T Krusin-Elbaum L Guarini K Black C T Tuominen M T Russell T P .[J].SCIENCE,2000,290:2126.
[22] Huang M H;Wu Y Y;Feick H;Tran N Weber E Yang P D .[J].Adv Ma-ter,2001,13:113.
[23] Lei Y.;Fan JC.;Zhang LD. .Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3[J].Chemical Physics Letters,2001(4-6):231-236.
[24] Urban J J;Yun W S;Gu Q;Park H .[J].Journal of the American Chemical Society,2002,124:1186.
[25] Ndiege N;Wilhoite T;Subramanian V;Shannon M A Masel R I .[J].CHEMISTRY OF MATERIALS,2007,19:3155.
[26] Baruwati, B.;Varma, R.S. .Synthesis of monodispersed tantalum(V) oxide nanospheres by an ethylene glycol mediated route[J].Crystal growth & design,2010(8):3424-3428.
[27] Lü X J;Ding S J;Lin T Q;Mou X L Hong Z L Huang F Q .[J].DALTON TRANSACTIONS,2012,41:622.
[28] Duan J Y;Shi W D;Xu L L;Mou G Y Xin Q L Guan J G .[J].Chem Com-mun,2012,48:7301.
[29] G?mpel D;Tahir M N;Panth?fer M;Mugnaioli E Brandscheid R Kolb U Tremel W .[J].J Mater Chem A,2014,2:8033.
[30] Kominami H.;Murakami S.;Yasuda T.;Kohno M.;Onoue S.;Kera Y.;Ohtani B.;Miyakawa M. .Solvothermal synthesis of tantalum(V) oxide nanoparticles and their photocatalytic activities in aqueous suspension systems[J].Physical chemistry chemical physics: PCCP,2001(13):2697-2703.
[31] Buha J;Arcon D;Niederberger M;Djerdj I .[J].Physical Chemistry Chemical Physics,2010,12:15537.
[32] Devan RS;Ho WD;Lin JH;Wu SY;Ma YR;Lee PC;Liou Y .X-ray Diffraction Study of a Large-Scale and High-Density Array of One-Dimensional Crystalline Tantalum Pentoxide Nanorods[J].Crystal growth & design,2008(12):4465-4468.
[33] Oh, M.H.;Lee, N.;Kim, H.;Park, S.P.;Piao, Y.;Lee, J.;Jun, S.W.;Moon, W.K.;Choi, S.H.;Hyeon, T. .Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping[J].Journal of the American Chemical Society,2011(14):5508-5515.
[34] Bonitatibus P J Jr;Torres A S;Goddard G D;Fitzgerald P F Kulkarni A M .[J].Chemistry Communications,2010,46:8956.
[35] Yu S H;Liu B;Mo M S;Huang J H Liu X M Qian Y T .[J].Advanced Functional Materials,2003,13:639.
[36] Hu YM;Gu HS;Hu ZL;Di WN;Yuan Y;You J;Cao WQ;Wang Y;Chan HLW .Controllable hydrothermal synthesis of KTa1-xNbxO3 nanostructures with various morphologies and their growth mechanisms[J].Crystal growth & design,2008(3):832-837.
[37] Xu T G;Zhao X;Zhu Y F .[J].Journal of Physical Chemistry B,2006,110:25825.
[38] Zhou C;Chen G;Li Y X;Zhang H J Pei J .[J].International Journal of Hydrogen Energy,2009,34:2113.
[39] Liu J W;Chen G;Li Z H;Zhang Z G .[J].International Journal of Hydrogen Energy,2007,32:2269.
[40] Li Y X;Chen S;He H Q;Zhang Y Wang C Y .[J].ACS Appl Mater Inter-faces,2013,5:10260.
[41] B?rdeanu M;B?rdeanu A V;Gruia A S;Fagadar-Cosma E Avram C N .[J].Journal of Alloys and Compounds,2013,573:53.
[42] Zhuravleva E Y .[J].Inorganic Materials,2004,40:671.
[43] Li Z S;Yu T;Zou Z G;Ye J H .[J].Applied Physics Letters,2006,88:071917.
[44] Maeda K;Domen K .New non-oxide photocatalysts designed for overall water splitting under visible light[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2007(22):7851-7861.
[45] Liu XM;Zhou YC .Seed-mediated synthesis of uniform ZnO nanorods in the presence of polyethylene glycol[J].Journal of Crystal Growth,2004(3/4):527-534.
[46] Zhang DS;Fu HX;Shi LY;Pan CS;Li Q;Chu YL;Yu WJ .Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2007(7):2446-2451.
[47] Kim S;Choi W .[J].Journal of Physical Chemistry B,2005,109:5143.
[48] Xu N P;Shi Z F;Fan Y Q;Dong J H Shi J Hu M Z C .[J].Industrial and Engineering Chemistry Research,1999,38:373.
[49] Wu N Q;Wang J;Tafen D N;Wang H Zheng J G Lewis J P Liu X G Leonard S S Manivannan A .[J].Journal of the American Chemical Society,2010,132:6679.
[50] Li S D;Dong Y H;Guo M R .[J].Applied Surface Sinence,2012,258:8015.
[51] Wu H B;Hng H H;Lou X W .[J].Advanced Materials,2012,24:2567.
[52] Jing LQ;Qu YC;Wang BQ;Li SD;Jiang BJ;Yang LB;Fu W;Fu HG;Sun JZ .Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2006(12):1773-1787.
[53] Yan J Q;Wu G J;Guan N J;Li L D Li Z X Cao X Z .[J].Physical Chemistry Chemical Physics,2013,15:10978.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%