欢迎登录材料期刊网

材料期刊网

高级检索

为了克服传统Pt系催化剂价格昂贵、稳定性差的缺点,采用热解新型TiO2/聚苯胺(PANI)复合物的方法合成了TiO2/C催化剂。用扫描电子显微镜、X射线光电子能谱、X射线衍射、傅里叶变换红外光谱、拉曼光谱、透射电子显微镜、循环伏安法和线性扫描伏安法等方法研究了热处理和PANI复合比例对复合物的形貌、成键、晶相组成及氧还原性能的影响。结果表明, PANI与TiO2间存在相互作用,可以抑制TiO2的团聚和锐钛矿向金红石的转变。热处理制得TiO2/C的氧还原活性随着PANI载体含量增加先升高后降低, PANI和TiO2质量比为35/100时,催化剂的氧还原活性最高。同时,循环伏安和时间-电流曲线测试表明,已制备的复合材料在催化氧还原反应进行时具有较好的稳定性。

To overcome the prohibitive cost and poor durability of conventional Pt‐based catalysts, TiO2/C was prepared by pyrolyzing a novel titanium dioxide/polyaniline (TiO2/PANI) composite. The prepared catalysts were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, cyclic voltammetry (CV), and linear sweep voltammetry. Interaction between PANI and TiO2 was found to inhibit the aggregation of TiO2 and its transformation from anatase to rutile. The catalytic activity of the TiO2/C first increased with increasing PANI content and then decreased; the optimum was achieved when the PANI/TiO2 mass ratio was 35/100. CV and i–t curves showed that the prepared composite has a good catalytic stability.

参考文献

[1] Chisaka M;Ishihara A;Suito K;Ota K Muramoto K .[J].Electrochimica Acta,2013,88:697.
[2] Ohgi Y;Ishihara A;Matsuzawa K;Mitsushima S Ota K Matsumoto M Imai H .[J].Journal of the Electrochemical Society,2013,160:F162.
[3] Sarada B Y;Dhathathreyan K S;Krishna M R .[J].Int J Hydrogen Ener-gy,2011,36:11886.
[4] Ohgi Y;Ishihara A;Matsuzawa K;Mitsushima S Ota K .[J].J Electro-chem Soc,2010,157:B885.
[5] Takasu Y;Suzuki M;Yang H S;Ohashi T Sugimoto W .[J].Electrochimica Acta,2010,55:8220.
[6] Ota K;Ohgi Y;Nam K D;Matsuzawa K Mitsushima S Ishihara A .[J].Journal of Power Sources,2011,196:5256.
[7] Seo J;Zhao L;Cha D;Takanabe K Katayama M Kubota J Domen K .[J].J Phys Chem C,2013,117:11635.
[8] Awaludin Z;Suzuki M;Masud J;Okajima T Ohsaka T .[J].J Phys Chem C,2011,115:25557.
[9] Ishihara A;Tamura M;Matsuzawa K;Mitsushima S Ota K .[J].Elec-trochim Acta,2010,55:7581.
[10] Ohgi Y;Ishihara A;Matsuzawa K;Mitsushima S Ota K Matsumoto M Imai H .[J].Electrochimica Acta,2012,68:192.
[11] Chisaka M;Iijima T;Yaguchi T;Sakurai Y .[J].Electrochimica Acta,2011,56:4581.
[12] Chisaka M;Suzuki Y;Iijima T;Sakurai Y .[J].J Phy Chem C,2011,115:20610.
[13] Chisaka M;Suzuki Y;Iijima T;Ishihara Y Inada R Sakurai Y .[J].ECS Electrochem Lett,2012,1:F4.
[14] 景明俊,王岩,钱俊杰,张敏,杨建军.水热法制备铂掺杂二氧化钛及其可见光催化性能[J].催化学报,2012(03):550-556.
[15] 姜洪泉,王巧凤,李世洋,李井申,王庆元.太阳光下高光催化活性Pr-N-P三元掺杂锐钛矿TiO2纳米片[J].催化学报,2014(07):1068-1077.
[16] Li X G;Liu C P;Xing W;Lu T H .[J].Journal of Power Sources,2009,193:470.
[17] Selvarani G;Maheswari S;Sridhar P;Pitchumani S Shukla A K .[J].Journal of the Electrochemical Society,2009,156:B1354.
[18] Jasin D;Abu-Rabi A;Mentus S;Jovanovic D .[J].Electrochimica Acta,2007,52:4581.
[19] Ioroi T;Akita T;Yamazaki S;Siroma Z Fujiwara N Yasuda K .[J].Journal of the Electrochemical Society,2011,158:C329.
[20] 张浩,张建民,肖庆锋.TiO2用于锌空电池阴极催化剂的研究[J].电源技术,2007(07):551-553,572.
[21] Dam D T;Nam K D;Song H;Wang X Lee J M .[J].International Journal of Hydrogen Energy,2012,37:15135.
[22] Zheng, Y.;Jiao, Y.;Chen, J.;Liu, J.;Liang, J.;Du, A.;Zhang, W.;Zhu, Z.;Smith, S.C.;Jaroniec, M.;Lu, G.Q.;Qiao, S.Z. .Nanoporous graphitic-C _3N _4@carbon metal-free electrocatalysts for highly efficient oxygen reduction[J].Journal of the American Chemical Society,2011(50):20116-20119.
[23] 衣宝廉.燃料电池--原理@技术@应用[M].北京:化学工业出版社,2004
[24] Gu L A;Wang J Y;Qi R;Wang X Y Xu P Han X J .[J].Journal of Molecular Catalysis A:Chemical,2012,357:19.
[25] Wu G;More K L;Johnston C M;Zelenay P .[J].SCIENCE,2011,332:443.
[26] Lin Z Y;Waller G H;Liu Y;Liu M L Wong C P .[J].CARBON,2013,53:130.
[27] 张娜,张生,朱彤,尹鸽平.金属氧化物在低温燃料电池催化剂中的应用[J].化学进展,2011(11):2240-2246.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%