欢迎登录材料期刊网

材料期刊网

高级检索

钯基纳米材料是甲酸电氧化反应的优良催化剂.本工作制备了两个系列钯基催化剂,并考察了聚苯胺对钯上甲酸电氧化反应的助催化作用.一种是以聚苯胺为基底,在其表面电沉积钯纳米粒子,制得nPANI/Pd催化剂(n表示聚合苯胺的循环数);另一种是直接在商业Pd/C催化剂表面电聚合苯胺,制得Pd/C/nPANI催化剂.结果显示,聚苯胺单独存在时对甲酸电氧化反应没有催化活性,但其可对钯上甲酸电氧化反应呈现明显的促进作用,且促进作用与聚苯胺的厚度(聚合循环数)密切相关.在两个系列催化剂中,15PANI/Pd和Pd/C/20PANI显示出最高的催化性能.15PANI/Pd中钯的质量比催化活性是纯钯催化剂的7.5倍; Pd/C/20PANI中钯的质量比催化活性和本征催化活性分别是商业Pd/C催化剂的2.3和3.3倍.钯催化性能的提升与聚苯胺和钯纳米粒子间的电子效应有关.

Pd-based nanomaterials have been considered as an effective catalyst for formic acid electrooxida-tion reaction (FAOR). Herein, we reported two types of polyaniline (PANI)-promoted Pd catalysts. One was annPANI/Pd electrocatalyst prepared by the electropolymerization of aniline and the electrodeposition of Pd. The other was a Pd/C/nPANI catalyst prepared by the direct electropoly-merization of aniline on a commercial Pd/C catalyst. The results show that PANI alone has no cata-lytic activity for FAOR; however, PANI can exhibit a significant promoting effect to Pd. The current densities of FAOR on the Pd catalysts with a PANI coating show a significant increase compared with that of the Pd reference catalyst without PANI as a promoter. The promoting effects of PANI are strongly dependent on the electropolymerization potential cycles (n). The highest catalytic ac-tivities for FAOR of all thenPANI/Pd and Pd/C/nPANI catalysts were those of 15PANI/Pd and Pd/C/20PANI. The mass-specific activity (MSA) of Pd in 15PANI/Pd was 7.5 times that of the Pd catalyst, and the MSA and intrinsic activity of Pd/C/20PANI were 2.3 and 3.3 times that of the Pd/C catalyst, respectively. The enhanced performance of Pd catalysts is proposed as an electronic effect between Pd nanoparticles and PANI.

参考文献

[1] Hoffmann P.Tomorrow's Energy:Hydrogen,Fuel Cells,and the Prospects for a Cleaner Planet[M].The MIT Press,2012
[2] Zhang H W;Shen P K .[J].CHEMICAL REVIEWS,2012,112:2780.
[3] 严泽宇,李冰,杨代军,马建新.质子交换膜燃料电池Pt纳米线电催化剂研究现状[J].催化学报,2013(08):1471-1481.
[4] Aricò A S;Srinivasan S;Antonucci V .[J].FUEL CELLS,2001,1:133.
[5] Song SQ;Tsiakaras P .Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs)[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2006(3/4):187-193.
[6] 罗远来,梁振兴,廖世军.直接甲醇燃料电池阳极催化剂研究进展[J].催化学报,2010(02):141-149.
[7] Yu X W;Pickup P G .[J].Journal of Power Sources,2008,182:124.
[8] Mazumder, V.;Chi, M.;Mankin, M.N.;Liu, Y.;Metin, O.;Sun, D.;More, K.L.;Sun, S. .A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation[J].Nano letters,2012(2):1102-1106.
[9] Jiang K;Cai W B .[J].Applied Catalysis B:Environmental,2014,147:185.
[10] Chen J W;Li Y J;Liu S R;Wang G Tian J Jiang C P Zhu S F Wang R L .[J].Applied Surface Sinence,2013,287:457.
[11] Wang J Y;Kang Y Y;Yang H;Cai W B .[J].J Phys Chem C,2009,113:8366.
[12] Masud, J.;Alam, M.T.;Miah, M.R.;Okajima, T.;Ohsaka, T. .Enhanced electrooxidation of formic acid at Ta2O 5-modified Pt electrode[J].Electrochemistry communications,2011(1):86-89.
[13] Hu C G;Cao Y X;Yang L;Bai Z Y Guo Y M Wang K Xu P L Zhou J G .[J].Applied Surface Sinence,2011,257:7968.
[14] Sun Z P;Zhang X G;Tong H;Xue R L Liang Y Y Li H L .[J].Applied Surface Sinence,2009,256:33.
[15] Chen S G;Wei Z D;Qi X Q;Dong L C Guo Y G Wan L J Shao Z G Li L .[J].Journal of the American Chemical Society,2012,134:13252.
[16] Pandey R K;Lakshminarayanan V .[J].J Phys Chem C,2009,113:21596.
[17] Ding K G;Jia H T;Wei S Y;Guo Z H .[J].Industrial and Engineering Chemistry Research,2011,50:7077.
[18] Ríos E;Abarca S;Daccarett P;Hguyen Cong N Martel D Marco J F Gancedo J R Gautier J L .[J].International Journal of Hydrogen Energy,2008,33:4945.
[19] Dong B;Song D F;Zheng L Q;Xu J K Li N .[J].Journal of Electroanalytical Chemistry,2009,633:63.
[20] Selvaraj V;Alagar M;Hamerton I .[J].Applied Catalysis B:Environmental,2007,73:172.
[21] Zhou W Q;Xu J K;Du Y K;Yang P .[J].International Journal of Hydrogen Energy,2011,36:1903.
[22] Feng Y Y;Yin Q Y;Lu G P;Yang H F Zhu X Kong D S You J M .[J].Journal of Power Sources,2014,272:606.
[23] Feng Y Y;Liu Z H;Xu Y;Wang P Wang W H Kong D S .[J].Journal of Power Sources,2013,232:99.
[24] Wang L C;Xu L Q;Sun C;Qian Y T .[J].Journal of Materials Chemistry,2009,19:1989.
[25] Yaldagard M;Jahanshahi M;Seghatoleslami N .[J].Applied Surface Sinence,2014,317:496.
[26] Yang Y;Diao M H;Gao M M;Sun X F Liu X W Zhang G H Qi Z Wang S G .[J].Electrochimica Acta,2014,132:496.
[27] He B L;Tang Q W;Wang M;Chen H Y Yuan S S .[J].ACS Appl Mater Interface,2014,6:8230.
[28] Niu L.;Li QH.;Wei FH.;Chen X.;Wang H. .Formation optimization of platinum-modified polyaniline films for the electrocatalytic oxidation of methanol[J].Synthetic Metals,2003(2):271-276.
[29] Wang Z;Zhu ZZ;Shi J;Li HL .Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyaniline composite film[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2007(22):8811-8817.
[30] Pan W;Zhang XK;Ma HY;Zhang JT .Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2008(7):2456-2461.
[31] Birry L;Lasia A .[J].Electrochimica Acta,2006,51:3356.
[32] Zhang JT;Huang MH;Ma HY;Tian F;Pan W;Chen SH .High catalytic activity of nanostructured Pd thin films electrochemically deposited on polycrystalline Pt and Au substrates towards electro-oxidation of methanol[J].Electrochemistry communications,2007(6):1298-1304.
[33] Zhou WJ;Lee JY .Particle size effects in Pd-catalyzed electrooxidation of formic acid[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2008(10):3789-3793.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%