欢迎登录材料期刊网

材料期刊网

高级检索

以硝酸铬为前驱体,中孔氧化硅SBA-16为载体,采用简单浸渍法制备了Cr/SBA-16催化剂,并采用广角和小角X射线衍射、N2吸附-脱附、透射电镜和紫外-可见光谱等技术对其进行了表征.同时将该催化剂用于以H2O2为氧化剂的苯直接羟基化制苯酚反应以考察其催化性能.将中心组合设计与响应曲面分析法(RSM)相结合,对影响反应性能的操作变量如反应温度、反应时间及H2O2和催化剂用量进行了优化.结果表明,独立变量和苯酚产率之间的关系可用二阶多项式模型来表达,其相关系数(R2)高达0.985,表明用RSM预测的数值与实验值吻合较好.得到的苯酚选择性较高时的操作条件为:反应温度324 K,反应时间8 h, H2O2和催化剂用量分别为3.28 mL和0.09 g.由此可见,将RSM法用于苯羟基化制苯酚反应条件优化是可靠的.

A Cr/SBA‐16 catalyst was prepared using Cr(NO3)3 as a precursor and mesoporous silica SBA‐16 as a support via a simple impregnation method. The catalyst was characterized using wide‐angle X‐ray diffraction (XRD), low‐angle XRD, N2 adsorption‐desorption, transmission electron microscopy, and ultraviolet‐visible spectroscopy. The catalyst activity was investigated in the direct hydroxylation of benzene to phenol using H2O2 as the oxidant. Various operating variables, namely reaction temper‐ature, reaction time, amount of H2O2, and catalyst dosage, were optimized using central composite design combined with response surface methodology (RSM). The results showed that the correla‐tion between the independent parameters and phenol yield was represented by a second‐order polynomial model. The high correlation coefficient (R2), i.e., 0.985, showed that the data predicted using RSM were in good agreement with the experimental results. The optimization results also showed that high selectivity for phenol was achieved at the optimized values of the operating varia‐bles:reaction temperature 324 K, reaction time 8 h, H2O2 content 3.28 mL, and catalyst dosage 0.09 g. This study showed that RSM was a reliable method for optimizing process variables for benzene hydroxylation to phenol.

参考文献

[1] Zhang J;Tang Y;Li G Y;Hu C W .[J].Applied Catalysis A:General,2005,278:251.
[2] St?ckmann M;Konietzni F;Notheis J U;Voss J Keune W Maier W F .[J].Applied Catalysis A:General,2001,208:343.
[3] Kubacka A;Wang Z L;Sulikowski B;Cortés Corberán V .[J].Journal of Catalysis,2007,250:184.
[4] Pirutko L V;Uriarte A K;Chernyavsky V S;Kharitonov A S Panov G I .[J].Microporous and Mesoporous Materials,2001,48:345.
[5] Panov G I;Sheveleva G A;Kharitonov A S;Romannikov V N Vostrikova L A .[J].Applied Catalysis A:General,1992,82:31.
[6] Okamura J;Nishiyama S;Tsuruya S;Masai M .[J].Journal of Molecular Catalysis A:Chemical,1998,135:133.
[7] Lee C W;Lee W J;Park Y K;Park S-E .[J].Catalysis Today,2000,61:137.
[8] Lemke K;Ehrich H;Lohse U;Berndt H J?hnisch K .[J].Applied Catalysis A:General,2003,243:41.
[9] Jiang T;Wang W T;Han B X .[J].New Journal of Chemistry,2013,37:1654.
[10] Song S Q;Jiang S J;Rao R C;Yang H X Zhang A M .[J].Applied Catalysis A:General,2011,401:215.
[11] Arab P;Badiei A;Koolivand A;Mohammadi Ziarani G .[J].催化学报,2011,32:258.
[12] Xu J;Jiang Q;Chen T;Wu F Li Y-X .[J].Catal Sci Technol,2015,5:1504.
[13] Parida K M;Rath D .[J].Applied Catalysis A:General,2007,321:101.
[14] Nemati Kharat A;Moosavikia S;Tamaddoni Jahromi B;Badiei A .[J].Journal of Molecular Catalysis A:Chemical,2011,348:14.
[15] Lee C-H;Lin T-S;Mou C-Y .[J].Journal of Physical Chemistry B,2003,107:2543.
[16] Taguchi A;Schüth F .[J].Microporous and Mesoporous Materials,2005,77:1.
[17] Weitkamp J;Hunger M;Rymsa U .[J].Microporous and Mesoporous Materials,2001,48:255.
[18] Corma A .[J].CHEMICAL REVIEWS,1997,97:2373.
[19] Rivera-Mu?oz E M;Huirache-Acu?a R .[J].INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES,2010,11:3069.
[20] Zhu Y J;Dong Y L;Zhao L N;Yuan F L .[J].Journal of Molecular Catalysis A:Chemical,2010,315:205.
[21] Dong Y L;Zhan X L;Niu X Y;Li J Yuan F L Zhu Y J Fu H G .[J].Microporous and Mesoporous Materials,2014,185:97.
[22] Spinacé E V;Schuchardt U;Cardoso D .[J].Applied Catalysis A:General,1999,185:L193.
[23] Yuvaraj S;Palanichamy M;Krishnasamy V.[J].Chemistry Communications,1996:2707.
[24] Tagawa T;Uchida H;Goto S .[J].Reaction Kinetics & Catalysis Letters,1991,44:25.
[25] Zhang W Z;Wang J L;Tanev P T;Pinnavaia T J.[J].Chemistry Communications,1996:979.
[26] Li Y;Wang Z;Chen R Z;Wang Y Xing W H Wang J Huang J .[J].CATALYSIS COMMUNICATIONS,2014,55:34.
[27] Leng Y;Liu J;Jiang P P;Wang J .[J].CHEMICAL ENGINEERING JOURNAL,2014,239:1.
[28] 徐丹,贾丽华,郭祥峰.Cu掺杂对介孔VOx-TiO2催化苯羟基化制苯酚的影响[J].催化学报,2013(02):341-350.
[29] Ding G D;Wang W T;Jiang T;Han B X Fan H L Yang G Y .[J].ChemCatChem,2013,5:192.
[30] Zhao P P;Leng Y;Wang J .[J].CHEMICAL ENGINEERING JOURNAL,2012,204-206:72.
[31] Tang Y;Zhang J .[J].J Serbian Chem Soc,2006,71:111.
[32] Olutoye M A;Hameed B H .[J].Applied Catalysis A:General,2009,371:191.
[33] Lazi??R.Design and Analysis of Experiments.Section 2.3[M].New York:Wiley Online Library,2004
[34] Mason R L;Gunst R F;Hess J L.Statistical Design and Analysis of Experiments:With Applications to Engineering and Science[M].New York:John Wiley and Sons,Inc,2003
[35] Kosuge K;Kikukawa N;Takemori M .[J].CHEMISTRY OF MATERIALS,2004,16:4181.
[36] Hosseinpour V;Kazemeini M;Mohammadrezaee A .[J].Applied Catalysis A:General,2011,394:166.
[37] Bobet J-L;Desmoulins-Krawiec S;Grigorova E;Cansell F Chevalier B .[J].Journal of Alloys and Compounds,2003,351:217.
[38] Weckhuysen B M;Wachs I E;Schoonheydt R A .[J].CHEMICAL REVIEWS,1996,96:3327.
[39] Jian M;Zhu L F;Wang J Y;Zhang J Li G Y Hu C W .[J].Journal of Molecular Catalysis A:Chemical,2006,253:1.
[40] Dapurkar S E;Sakthivel A;Selvam P .[J].Journal of Molecular Catalysis A:Chemical,2004,223:241.
[41] Neumann R;Levin-Elad M .[J].Applied Catalysis A:General,1995,122:85.
[42] Huybrechts D R C;Buskens P L;Jacobs P A .[J].Journal of Molecular Catalysis,1992,71:129.
[43] Iwamoto M;Hirata J;Matsukami K;Kagawa S .[J].Journal of Physical Chemistry,1983,87:903.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%