欢迎登录材料期刊网

材料期刊网

高级检索

纤维素酶是一种有效的纤维质类物质水解催化剂,工业应用时可通过固定化纤维素酶来降低其成本。本文将烟曲霉原变种JCF产生的纤维素酶固定在MnO2纳米颗粒上。 MnO2可提高纤维素酶的活性,并充当一个更好的载体。采用扫描电镜表征了所制MnO2纳米粒子及其负载纤维素酶的表面性质,以傅里叶变换红外光谱分析了固定在MnO2纳米粒子上纤维素酶的官能团性质。纤维素酶在MnO2纳米粒子上最大的固定化效率为75%。考察了固定化纤维素酶的活性、操作pH值、温度、热稳定性和重复使用性等性质。结果表明,所制固定化酶的稳定性比游离酶更高。固定于MnO2纳米粒子上的纤维素酶可用于纤维质类物质的水解反应,且能在较宽的温度和pH值范围内使用。表征结果证实了该催化剂具有非常高的催化纤维素类物质水解的活性。

Cellulase is an efficient enzymatic catalyst that hydrolyses cellulosic substances. The high costs associated with using enzymes for industrial applications can be reduced by immobilizing the cellu-lase. In the current study, cellulase produced by Aspergillus fumigatus JCF was immobilized onto MnO2 nanoparticles, which improve the activity of cellulase and offer a superior support. The sur-face characteristics of synthesized MnO2 nanoparticles and cellulase-bound MnO2 nanoparticles were investigated by scanning electron microscopy, and Fourier transform infrared spectroscopy was used to analyze the functional characteristics of the immobilized cellulase. The maximum cellu-lase binding efficiency was 75%. The properties of the immobilized cellulase, including activity, operational pH, temperature, thermal stability, and reusability were investigated and were found to be more stable than for the free enzyme. It was found that cellulase immobilized on MnO2 nanopar-ticles could be used to hydrolyze cellulosic substances over a broad range of temperature and pH. The results confirmed that cellulase immobilized on MnO2 nanoparticles was very efficient in terms of cellulolytic activity.

参考文献

[1] Olofsson K;Wiman M;Liden G .[J].J Biotechnol,2010,145:168.
[2] Jagtap S;Rao M .[J].Biochem Biophys Res Commun,2005,329:111.
[3] Guo R;Ding M;Zhang SL;Xu GJ;Zhao FK .Molecular cloning and characterization of two novel cellulase genes from the mollusc Ampullaria crossean[J].Journal of Comparative Physiology, B. Biochemical, Systemic, and Environmental Physiology,2008(2):209-215.
[4] Walsh G.[A].New York:Wiley,2001
[5] Liao H D;Chen D;Yuan L;Zheng M,Zhu Y H,Liu X M .[J].Carbohyd Polym,2010,82:600.
[6] Vaillant F;Millan A;Millan P;Dornier M,Decloux M,Reynes M .[J].Process Biochem,2000,35:989.
[7] Mao X P;Guo G J;Huang J F;Du Z Y,Huang Z S,Ma L,Li P,Gu L Q .[J].J Chem Technol Biotechnol,2006,81:189.
[8] Wu LL;Yuan XY;Sheng J .Immobilization of cellulase in nanofibrous PVA membranes by electrospinning[J].Journal of Membrane Science,2005(1/2):167-173.
[9] Gupta AK;Gupta M .Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J].Biomaterials,2005(18):3995-4021.
[10] Annamalai N;Rajeswari M V;Elayaraja S;Balasubramanian T .[J].Carbohyd Polym,2013,94:409.
[11] Klostergaard,J.;Seeney,C.E. .Magnetic nanovectors for drug delivery[J].Maturitas: International Journal for the Study of the Climacteric,2012(1):33-44.
[12] Sung, Y.J.;Suk, H.-J.;Sung, H.Y.;Li, T.;Poo, H.;Kim, M.-G..Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk[J].Biosensors & Bioelectronics: The International Journal for the Professional Involved with Research, Technology and Applications of Biosensers and Related Devices,2013:432-439.
[13] Savage N;Diallo MS .Nanomaterials and water purification: Opportunities and challenges[J].Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology,2005(4/5):331-342.
[14] Anirudhan, T.S.;Rauf, T.A..Lysozyme immobilization via adsorption process using sulphonic acid functionalized silane grafted copolymer[J].Colloids and Surfaces, B. Biointerfaces,2013:1-10.
[15] Tratnyek P G;Johnson R L .[J].Nano Today,2006,1:44.
[16] Ansari S A;Husain Q .[J].Biotechnol Adv,2012,30:512.
[17] Gupta M N;Kaloti M;Kapoor M;Solanki K .[J].Artif Cells Blood Substit Immobil Biotechnol,2011,39:98.
[18] Zhang Y C;Qiao T;Hu X Y .[J].J Solid State Chem,2004,177:4093.
[19] Gopalakrishnan I K;Bagkar N;Ganguly R;Kulshreshtha S K .[J].J Cryst Growth,2005,280:436.
[20] He X;Wang Z H;Geng D Y;Zhang Z D .[J].J Mater Sci Technol,2011,27:503.
[21] Mei X Y;Liu R H;Shen F;Wu H J .[J].Energy Fuels,2009,23:487.
[22] Han M;Kim Y;Chung B,Choi G W .[J].Korean J Chem Eng,2011,28:119.
[23] Harish Kuma M;Poonam S .[J].Int J Chem Chem Eng,2013,3:155.
[24] Khattak W A;Ul-Islam M;Park J K .[J].Korean J Chem Eng,2012,29:1467.
[25] Verma M L;Chaudhary R;Tsuzuki T;Barrow C J,Puri M .[J].Bioresour Technol,2013,135:2.
[26] Abraham R E;Verma M L;Barrow C J;Puri M .[J].Biotechnol Biofuels,2014,7:90.
[27] Lineweaver H;Burk D .[J].J Am Chem Soc,1934,56:658.
[28] Miller G L .[J].Anal Chem,1959,31:426.
[29] Balasubramanian K;Ambikapathy V;Panneerselvam A .[J].J Microbiol Biotechnol Res,2011,1:4):158.
[30] Arica M Y;Bayramoglu G;Bicak N .[J].Process Biochem,2004,39:2007.
[31] Ahmed R;Sardar M .[J].Indian J Biochem Biophys,2014,51:314.
[32] Goldstein L;Levin Y;Katchalski E .[J].Biochemistry,1964,3:1913.
[33] Gokhale A A;Lu J;Lee I .[J].J Mol Catal B,2013,90:76.
[34] Jordan J;Kumar C S S R;Theegala C .[J].J Mol Catal B,2011,68:139.
[35] Cao M;Li Z H;Wang J L;Ge W P,Yue T L,Li R H,Colvin V L,Yu W W .[J].Trends Food Sci Technol,2012,27:47.
[36] Bellamy L J.The infrared Spectra of Complex Molecules[M].New York:John Wiley,1975
[37] Silverstein R M;Webster F X.Spectrometric Identification of Or-ganic Compounds[M].New York:John Wiley,1998
[38] Jones R P;Pamment N;Greenfield P F .[J].Process Biochem,1981,16:42.
[39] Takagi M;Abe S;Suzuki S;Emert G H,Yata N.[A].Delhi:Indian Institute of Technology Delhi,1977:551.
[40] Zhang Z S;Donaldson A A;Ma X X .[J].Biotechnol Adv,2012,30:913.
[41] Wei W;Yuan T Q;Wang K;Cui B K,Dai Y C .[J].Process Biochem,2012,47:2552.
[42] McKendry P .[J].Bioresour Technol,2002,83:37.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%