欢迎登录材料期刊网

材料期刊网

高级检索

氧还原反应是燃料电池及金属空气电池中极其重要的电化学反应之一,贵金属铂基催化剂被认为是最有效的氧还原反应电催化剂.然而,贵金属铂的资源稀缺以及高成本问题阻碍了相关技术的大规模应用,探索发展廉价高效的贵金属替代型催化剂是推动燃料电池发展的根本解决方案.近年来,人们在非贵金属催化剂开发方面取得了显著进展,其中新型纳米结构掺杂炭材料研究尤为活跃.氮杂有序介孔炭材料由于其高比表面积和独特的孔结构,在燃料电池技术上具有广泛的应用前景.在氮杂有序介孔炭材料的制备过程中,热解条件对炭材料组成、结构及电催化性能有着重要影响.然而,目前尚未见对氮杂炭材料制备过程中热解条件的影响进行系统研究.
  本文采用我们发展的蒸汽化-毛细管冷凝法,以SBA-15为硬模板浸渍前驱体吡咯,制备出具有高比表面积和独特孔结构的氮杂有序介孔炭材料,系统研究了热解条件(包括热解温度、热解时间和升温速率)对炭材料组成、结构及电催化性能的影响,采用N2吸附-脱附等温线、X射线光电子能谱(XPS)及Raman光谱等方法考察了氮杂有序介孔炭材料的结构和组成,采用循环伏安法与旋转环盘电极研究了其电化学行为与氧还原反应电催化活性及选择性.
  N2吸附-脱附等温线显示,氮杂炭材料对应IV型吸附-脱附等温线,孔径主要分布在2–10 nm,表明所制材料具有介孔结构.随着热处理温度升高,氮杂有序介孔炭材料比表面积先增加而后降低,热处理时间的延长有利于比表面积增大,但升温速率对所制炭材料比表面积没有明显影响,当升温速率为30 oC/min,900 oC焙烧3 h时,氮杂有序介孔炭材料的比表面积达到最大值888 m2/g. XPS测试结果表明,随着热处理温度升高,氮杂有序介孔炭材料中含氮基团的分解进一步加深,使N含量逐渐降低.延长热处理时间亦然,而升温速率的改变对N含量无明显影响.在热处理温度较低时(600 oC),所得材料中N主要以吡咯氮和吡啶氮的形式存在;当温度达到800 oC以上,吡咯氮转化为吡啶氮和骨架氮,且主要以骨架氮形式存在,说明氮杂有序介孔炭材料的石墨化程度逐渐升高. ;Raman光谱结果显示,随着热处理温度升高, ID/IG逐渐降低,进一步印证了温度对石墨化程度的影响.
  电化学测试结果表明,随着热处理温度升高,氮杂有序介孔炭材料的氧还原反应电催化活性逐渐升高,但是当热处理温度从900 oC升至1000 oC时,氧还原反应活性增加很小;升温速率与热处理时间对氧还原反应电催化活性的影响均不明显.与商品Pt/C催化剂相比,900 oC以上所制催化剂均表现出更优异的氧还原电催化活性与选择性.由此可见,热处理温度是决定碳源热化学行为的关键因素,进而决定炭材料表面组成与结构.电化学研究结果表明,800 oC以上进行热处理碳化,所生成石墨化微晶可有效促进电子传递,降低欧姆极化损失,同时,较高的处理温度可促进骨架氮掺杂,从而构建出高效氧还原反应活性位点.因此,氮杂型炭催化剂的组成、结构与电化学性能更多地受控于热处理过程中的热力学,而非热解动力学过程.

Pt is the most effective and widely used electrocatalyst for the oxygen reduction reaction (ORR) in fuel cells;however, its scarcity and high cost pose a great challenge to the commercialization of the fuel cell technology. N-doped carbon materials have been regarded as one of the most promising Pt-alternative catalysts. In this work, the N-doped ordered mesoporous carbon was synthesized by the nanocasting method using SBA-15 as the template. The effect of the pyrolysis conditions (pyrol-ysis temperature, pyrolysis duration, and ramp rate) on this material was investigated. N2 adsorp-tion-desorption isotherms, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to investigate the intrinsic properties of the resultant materials. Cyclic voltammetry and rotating ring-disk electrode were used to investigate the electrochemical behavior for ORR in an alkaline medium. It was found that the resultant mesoporous carbon materials exhibit high electrical con-ductivity, high specific surface area, and unique pore structure. The pyrolysis temperature was the most important parameter in determining the thermodecomposition of the carbon precursor, and the microstructure, elemental composition, and chemical configuration of the resultant mesoporous carbon materials. To achieve reasonable electrocatalytic activity and selectivity, a high pyrolysis temperature above 800 °C is required for effective N doping to form active sites and for graphitiza-tion to facilitate charge transfer, whereas the pyrolysis duration and ramp rate have a much less significant effect. This indicates that both the surface composition/structure and consequent elec-trochemical properties are more dependent on the thermodynamics than the kinetics during the pyrolysis process. Finally, the optimal N-doped ordered mesoporous carbon catalyst showed supe-rior electrochemical activity for ORR than the commercial Pt catalyst and is promising for fuel cell and metal–air battery applications.

参考文献

[1] Zhang P;Sun F;Xiang Z H;Shen Z G,Yun J,Cao D P .[J].Energ Environ Sci,2014,7:442.
[2] 严泽宇,李冰,杨代军,马建新.质子交换膜燃料电池Pt纳米线电催化剂研究现状[J].催化学报,2013(08):1471-1481.
[3] 吴惠,彭焘,寇宗魁,张建,程坤,何大平,潘牧,木士春.应用于氧还原反应的石墨烯-无定形碳核壳结构复合材料载铂催化剂[J].催化学报,2015(04):490-495.
[4] Ye T N;Lv L B;Li X H;Xu M,Chen J S .[J].Angew Chem Int Ed,2014,53:6905.
[5] Wu G;More K L;Johnston C M;Zelenay P .[J].Science,2011,332:443.
[6] Sa Y J;Park C;Jeong H Y;Park S H,Lee Z,Kim K T,Park G G,Joo S H .[J].Angew Chem Int Ed,2014,53:4102.
[7] 严祥辉,张贵荣,徐柏庆.聚苯胺衍生Fe-N-C催化剂在碱性电解质中对氧还原反应的催化性能[J].催化学报,2013(11):1992-1997.
[8] 邹志娟,程皓,王靖宇,韩喜江.热解二氧化钛/聚苯胺制备高效非贵金属氧还原电催化剂[J].催化学报,2015(03):414-424.
[9] He W H;Jiang C H;Wang J B;Lu L H .[J].Angew Chem Int Ed,2014,53:9503.
[10] Ramasahayam S K;Nasini U B;Bairi V;Shaikh A U,Viswanathan T .[J].RSC Adv,2014,4:6306.
[11] Lefevre M;Proietti E;Jaouen F;Dodelet J P .[J].Science,2009,324:71.
[12] Wang X Q;Lee J S;Zhu Q;Liu J,Wang Y,Dai S .[J].Chem Mater,2010,22:2178.
[13] Zhao H;Hui K S;Hui K N .[J].Carbon,2014,76:1.
[14] Sevilla M;Yu L H;Fellinger T P;Fuertes A B,Titirici M M .[J].RSC Adv,2013,3:9904.
[15] Shrestha S;Mustain W E .[J].J Electrochem Soc,2010,157:B1665.
[16] Fulvio P F;Jaroniec M;Liang C D;Sheng D .[J].J Phys Chem C,2008,112:13126.
[17] Zhang Y;Zhuang X D;Su Y Z;Zhang F,Feng X L .[J].J Mater Chem A,2014,2:7742.
[18] Silva, R.;Voiry, D.;Chhowalla, M.;Asefa, T. .Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline-derived N- and O-doped mesoporous carbons[J].Journal of the American Chemical Society,2013(21):7823-7826.
[19] Jaouen F;Dodelet JP .Non-noble electrocatalysts for O-2 reduction: How does heat treatment affect their activity and structure? Part I. Model for carbon black gasification by NH3: Parametric calibration and electrochemical validation[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2007(16):5963-5970.
[20] Jaouen F;Serventi AM;Lefevre M;Dodelet JP;Bertrand P .Non-noble electrocatalysts for O-2 reduction: How does heat treatment affect their activity and structure? Part II. Structural changes observed by electron microscopy, Raman, and mass spectroscopy[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2007(16):5971-5976.
[21] Wan K;Long G F;Liu M Y;Du L,Liang Z X,Tsiakaras P .[J].Appl Catal B,2015,165:566.
[22] Zhao D Y;Feng J L;Huo Q S;Melosh N,Fredrickson G H,Chmelka BF,Stucky G D .[J].Science,1998,279:548.
[23] Zhao D;Shui J L;Chen C;Chen X Q,Reprogle B M,Wang D,Liu D J .[J].Chem Sci,2012,3:3200.
[24] Xiao H;Shao Z G;Zhang G;Gao Y,Lu W T,Yi B L .[J].Carbon,2013,57:443.
[25] Chen S;Bi J Y;Zhao Y;Yang L J,Zhang C,Ma Y W,Wu Q,Wang X Z,Hu Z .[J].Adv Mater,2012,24:5593.
[26] Zhang H;Kuila T;Kim N H;Yu D S,Lee J H .[J].Carbon,2014,69:66.
[27] Sharifi, T.;Hu, G.;Jia, X.;W?gberg, T. .Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes[J].ACS nano,2012(10):8904-8912.
[28] Sheng, Z.-H.;Shao, L.;Chen, J.-J.;Bao, W.-J.;Wang, F.-B.;Xia, X.-H. .Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J].ACS nano,2011(6):4350-4358.
[29] Monteverde Videla A H A;Ban S;Specchia S;Zhang L,Zhang J J .[J].Carbon,2014,76:386.
[30] Kang D Y;Moon J H .[J].Sci Rep,2014,4:5392.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%