欢迎登录材料期刊网

材料期刊网

高级检索
溶胶组成的复合TiO_2溶胶,以及其电泳制备涂层的光催化性.实验发现复合溶胶的Zeta电位小于相应的溶胶Zeta电位.对于溶胶在不同温度下煅烧制备的TiO_2粉末进行XRD表征,结果表明随着煅烧温度升高,粉末结晶程度提高,从200 ℃开始出现锐钛矿TiO_2晶相,在550 ℃出现金红石型TiO_2.光催化性能表明,由溶胶而得到的TiO_2涂层的光催化性能要好于复合TiO_2溶胶的光催化性能.","authors":[{"authorName":"谢冰","id":"6582defe-930f-41a6-a147-82b4e70dfc7f","originalAuthorName":"谢冰"},{"authorName":"章少华","id":"d9800d31-d771-48ad-b08e-dcf2c630ede2","originalAuthorName":"章少华"},{"authorName":"刘青","id":"1f1fc983-3416-4bb0-8e49-55d62a7aaab0","originalAuthorName":"刘青"},{"authorName":"李辉糯","id":"67d4988b-a111-4238-96a6-2cba92eecdd9","originalAuthorName":"李辉糯"}],"doi":"","fpage":"1274","id":"572fb89d-482e-4bec-8661-ff6619a2284b","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"45e74112-56d2-4740-9d35-7b3e0ab5fa72","keyword":"TiO_2","originalKeyword":"TiO_2"},{"id":"81df3e5b-256e-4185-a19c-d52f36b6f81d","keyword":"复合溶胶","originalKeyword":"复合溶胶"},{"id":"4050da0c-8f15-4b15-b1a0-bd3e632c958d","keyword":"光催化","originalKeyword":"光催化"},{"id":"fa90a0c9-d1d6-4875-ba40-0e6dcc3cc7a0","keyword":"电泳","originalKeyword":"电泳"}],"language":"zh","publisherId":"xyjsclygc2009z2338","title":"复合溶胶电泳制备TiO_2涂层的研究","volume":"38","year":"2009"},{"abstractinfo":"首先合成了镍-铬复合溶胶,然后向其中掺杂纳米SiC粉末得到喷涂用涂料,进而在镍基高温合金上制备了NiO-Cr2O3-SiC红外高发射率复合陶瓷涂层.结果表明,该涂层有很高的发射率,与基材结合良好,抗热震性能明显优于Al2O3-SiC陶瓷涂层.","authors":[{"authorName":"张虎","id":"ca8f4661-9859-4614-8e15-27a419293a0e","originalAuthorName":"张虎"},{"authorName":"王小群","id":"49341b1b-1545-430d-8461-c8c6156853fd","originalAuthorName":"王小群"},{"authorName":"廖芳平","id":"304721a7-edd7-4176-8799-dd5dfad2d711","originalAuthorName":"廖芳平"},{"authorName":"杜善义","id":"6bd5e453-5fac-436a-86ba-58e7065cf3a3","originalAuthorName":"杜善义"}],"doi":"","fpage":"898","id":"006c5045-f819-4adc-873a-aca49be76cf1","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"13d40c0d-ee95-439e-af35-a46b09c202ee","keyword":"复合溶胶","originalKeyword":"复合溶胶"},{"id":"753db020-dd70-46ae-aecc-35da5fb0e0e8","keyword":"喷涂","originalKeyword":"喷涂"},{"id":"1b75ede9-95c0-4fe9-b7f8-d682bded5a0a","keyword":"陶瓷涂层","originalKeyword":"陶瓷涂层"},{"id":"90474f76-ec5c-4ecc-9002-558c2ec17be0","keyword":"抗热震性","originalKeyword":"抗热震性"}],"language":"zh","publisherId":"gncl200706012","title":"镍-铬复合溶胶的制备及其在高发射率涂层中的应用","volume":"38","year":"2007"},{"abstractinfo":"采用原位化学氧化法,在酸性TiO2溶胶中未加分散剂制备了聚苯胺修饰的TiO2稳定溶胶,并以涂刮法在柔性导电塑料薄膜上成膜。利用FT-IR、XRD、TEM、选区电子衍射、紫外-可见光谱、光电流-电压曲线对所制备的复合溶胶复合膜进行了表征。结果表明TiO2与聚苯胺之间实现了结构上的复合,聚苯胺的引入改善了TiO2膜对太阳光的利用率,提高了TiO2膜的光电响应性能。这种用复合溶胶制备聚苯胺/TiO2复合膜的方式扩大了成膜基底的范围。","authors":[{"authorName":"邓杰","id":"1dd70208-de20-4e09-9d0c-d2457b0b99f9","originalAuthorName":"邓杰"},{"authorName":"陶杰","id":"27c793c6-564f-4ac1-8bbf-9a2604357860","originalAuthorName":"陶杰"},{"authorName":"高洁","id":"10be3e2a-efa0-4f11-8e92-32db40d412d5","originalAuthorName":"高洁"},{"authorName":"秦琦","id":"5d6c707c-21b7-4e88-b578-f2df221241b5","originalAuthorName":"秦琦"}],"doi":"","fpage":"904","id":"e34869d7-3ea1-4b47-bf17-c0f89b0884a1","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6dec59e0-b2d5-4078-b554-c5a265535a1d","keyword":"聚苯胺/TiO2","originalKeyword":"聚苯胺/TiO2"},{"id":"7e83000f-15ca-4ee6-a5f7-ac558ac6b5a2","keyword":"复合溶胶","originalKeyword":"复合溶胶"},{"id":"03f8df9c-3d0b-4ad8-b40f-2b90f380bb2b","keyword":"纳米复合膜","originalKeyword":"纳米复合膜"},{"id":"319c4315-03d5-4a1d-a64b-fc8c2213db3a","keyword":"光电性能","originalKeyword":"光电性能"},{"id":"0d05585b-2b1f-435d-822d-f7e10e344e11","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"gncl201207023","title":"聚苯胺/TiO2复合纳米膜电极的制备及其光电性能","volume":"43","year":"2012"},{"abstractinfo":"以甲基三甲氧基硅烷(MTMS)的水解缩聚产物作为主要成膜物质、正硅酸乙酯(TEOS)和异丙醇铝的水解缩聚产物硅溶胶和铝溶胶作为无机增强物、甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)作为表面改性剂,通过共缩聚反应在聚碳酸酯(PC)板表面制备硅铝溶胶增强有机/无机复合薄膜;采用乌氏粘度计、TG/DTA、FTIR、UV-VIS、金相显微镜、铅笔硬度测试方法及划格法对涂膜液及薄膜性能进行表征.研究结果表明,加入KH-570改性铝溶胶后的涂膜液稳定性较好,MTMS水解缩聚产物与硅溶胶、铝溶胶通过共缩聚反应在PC板表面形成带有机基团的无机交联网络结构,基本骨架由Si-O-Si、Si-O-Al、Al-O-Al组成;铝溶胶的引入提高了薄膜的耐热性能及薄膜硬度,但KH-570改性的效果不明显;薄膜对PC片有增透效果,涂膜液陈化2 d后,加入KH-570改性铝溶胶后薄膜的增透效果更理想;加入KH-570改性铝溶胶后薄膜的表面平整性得到改善.","authors":[{"authorName":"陆静娟","id":"2b81ab76-ff97-4fc3-b1c1-3421a71d6de0","originalAuthorName":"陆静娟"},{"authorName":"郭兴忠","id":"2e26f859-371f-4b7d-ba4c-87c6de88f0eb","originalAuthorName":"郭兴忠"},{"authorName":"杨辉","id":"7d8e699b-f2b5-4258-8eb9-a6ff71221dd2","originalAuthorName":"杨辉"}],"doi":"","fpage":"111","id":"7782b79e-4b85-423d-a401-057c37104430","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a2eafb6d-7bf0-4e6d-ae28-55b16c5c0b34","keyword":"甲基三甲氧基硅烷","originalKeyword":"甲基三甲氧基硅烷"},{"id":"159ed53a-e938-4f01-84a5-c6d2525cdd83","keyword":"硅溶胶","originalKeyword":"硅溶胶"},{"id":"65169e92-0a20-427d-bbbf-edca1d605f9f","keyword":"铝溶胶","originalKeyword":"铝溶胶"},{"id":"7547da0a-a30d-400d-996a-e7c5ce8fdd5c","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"7644c895-eb75-4fc7-9ef6-e5ff49887889","keyword":"水解缩聚","originalKeyword":"水解缩聚"},{"id":"4525ffaa-69f2-4cec-b6af-fec47cbaeea0","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"f368b361-59cc-4abf-84b6-ee952bcbad4e","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"xyjsclygc2008z2030","title":"溶胶-凝胶法制备硅铝溶胶增强有机/无机复合薄膜","volume":"37","year":"2008"},{"abstractinfo":"以正硅酸乙酯(TEOS)、硝酸铁和银酸铵为原料,用溶胶-凝胶法制备了Fe-Si-O和Mo-O溶胶,通过浸渍-提拉法,分别制得了Fe-Si-O薄膜(以载玻片为基板)和MO-Fe-Si-O薄膜(以多孔α-Al2O3为基质材料).考察了制备工艺条件对Fe-Si-O成膜的影响,采用DTA、XRD和SEM等技术研究了热处理条件对Mo-Fe-Si-O薄膜结构的影响.结果表明:溶胶粘度、衬底材质、浸渍时间、提拉速度等是影响Fe-Si-O成膜的主要因素;溶胶-凝胶法制备的Mo-Fe-Si-O/α-Al2O3无机复合膜热处理温度达到650℃以上,即能形成比较明显的结晶相,薄膜经高温焙烧(700℃)-冷却反复5次,膜表面没有出现剥离和开裂现象.","authors":[{"authorName":"盛梅","id":"b2e2793d-0834-4c3f-9678-4734c8e77f54","originalAuthorName":"盛梅"},{"authorName":"朱毅青","id":"be296d7c-8ee1-4333-b514-acbfe8d39299","originalAuthorName":"朱毅青"},{"authorName":"吴泽彪","id":"ae60fdf1-758e-4532-bb32-5e21941cd1d7","originalAuthorName":"吴泽彪"},{"authorName":"林西平","id":"3808c509-f222-4faf-942d-5ab5cc25e8fb","originalAuthorName":"林西平"},{"authorName":"栗洪道","id":"d09ac9b5-438d-4b89-a0cc-63f67e0c85b8","originalAuthorName":"栗洪道"}],"categoryName":"|","doi":"","fpage":"866","id":"0c8d994d-b25d-4b53-b867-493f194a02d6","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"07cd7b30-67ce-4c23-9f07-77bffc6b906a","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"d21130f3-4d90-486f-a71e-eefd2a924d3e","keyword":"null","originalKeyword":"null"},{"id":"93efdbea-7dd7-426f-9ebc-a95fd2710d32","keyword":"null","originalKeyword":"null"},{"id":"d03e06b9-0dc9-40b7-885c-8209c5642a87","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1000-324X_1999_6_13","title":"溶胶-凝胶法制备无机复合膜催化材料","volume":"14","year":"1999"},{"abstractinfo":"以正硅酸乙酯(TEOS)、硝酸铁和钼酸铵为原料,用溶胶-凝胶法制备了Fe-Si-O和Mo-O溶胶,通过浸渍-提拉法,分别制得了Fe-Si-O薄膜(以载玻片为基板)和Mo-Fe-Si-O薄膜(以多孔α-Al2O3为基质材料). 考察了制备工艺条件对Fe-Si-O成膜的影响,采用DTA、XRD和SEM等技术研究了热处理条件对Mo-Fe-Si-O薄膜结构的影响. 结果表明:溶胶粘度、衬底材质、浸渍时间、提拉速度等是影响Fe-Si-O成膜的主要因素;溶胶-凝胶法制备的Mo-Fe-Si-O/α-Al2O3无机复合膜热处理温度达到650℃以上, 即能形成比较明显的结晶相,薄膜经高温焙烧(700℃)-冷却反复5次,膜表面没有出现剥离和开裂现象.","authors":[{"authorName":"盛梅","id":"c988b3c5-4683-4321-827e-dc995d29320b","originalAuthorName":"盛梅"},{"authorName":"朱毅青","id":"27362abe-fce6-49b5-b5a7-3078b99f1f55","originalAuthorName":"朱毅青"},{"authorName":"吴泽彪","id":"15a9dd23-49ea-4ca8-8e41-1e5ceaba1858","originalAuthorName":"吴泽彪"},{"authorName":"林西平","id":"1a631ccc-f172-4fbb-867e-48f50dc5582a","originalAuthorName":"林西平"},{"authorName":"栗洪道","id":"d1b5e966-729e-4c8e-b52b-bbd3ae76c1c1","originalAuthorName":"栗洪道"}],"doi":"10.3321/j.issn:1000-324X.1999.06.006","fpage":"866","id":"133a1f7e-288b-4d7e-8d9a-bde0827fdebd","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"7da88aa0-accd-45ac-8bba-2cd892a45e47","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"01d9b650-bef6-459a-b872-9974b16d1946","keyword":"Fe-Si-O溶胶","originalKeyword":"Fe-Si-O溶胶"},{"id":"338282e5-09f2-4e54-910b-920bd4a473f4","keyword":"Mo-O溶胶","originalKeyword":"Mo-O溶胶"},{"id":"1c44ce76-28a4-412a-abae-2e2084c65758","keyword":"Mo-Fe-Si-O薄膜","originalKeyword":"Mo-Fe-Si-O薄膜"}],"language":"zh","publisherId":"wjclxb199906006","title":"溶胶-凝胶法制备无机复合膜催化材料","volume":"14","year":"1999"},{"abstractinfo":"通过XRD,SEM和PSA等微观分析手段,研究了冶金环境中腐蚀性液体介质的作用下混凝土材料的腐蚀机理,并通过溶胶-凝胶法制备成的纳米微粒和聚合物共同作用研制成具有该腐蚀性介质作用的新型复合防护砂浆.研究结果表明:复合砂浆的结构密实,改善了原砂浆的孔隙结构特征,其耐蚀系数提高33%.","authors":[{"authorName":"詹树林","id":"7a4d3bb0-d3aa-4386-a26c-5d652fc4203f","originalAuthorName":"詹树林"},{"authorName":"孟涛","id":"456c9cd0-500d-4c87-9135-7d6abfc0aee9","originalAuthorName":"孟涛"},{"authorName":"钱晓倩","id":"6acc22ae-e8bc-4160-906e-e00befd1dc0e","originalAuthorName":"钱晓倩"},{"authorName":"钱匡亮","id":"6b3029dc-2e07-4547-b3b0-cb92828de389","originalAuthorName":"钱匡亮"},{"authorName":"方明晖","id":"8a5c27a0-cee0-42c7-ac0a-37a01a504939","originalAuthorName":"方明晖"}],"doi":"","fpage":"222","id":"297bccca-a032-4cdb-ac1e-910fec042e89","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"92bed5dc-f891-4f98-a0d8-153d45d306e4","keyword":"冶金环境","originalKeyword":"冶金环境"},{"id":"2ab2b200-79b8-4a5f-97dd-76a636dd605b","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"598e3180-3d85-493e-94db-295fea99bfbf","keyword":"腐蚀机理","originalKeyword":"腐蚀机理"},{"id":"81a79f68-81e1-4ccb-a094-eca5a1607c9c","keyword":"防护砂浆","originalKeyword":"防护砂浆"}],"language":"zh","publisherId":"xyjsclygc2004z1059","title":"溶胶-凝胶法制备复合防护砂浆的性能研究","volume":"33","year":"2004"},{"abstractinfo":"以硝酸铝和硝酸钇为先驱体,采用无机盐溶胶-凝胶法将YAG引入到SiC粉体中制备siC/YAG复合粉体;并采用IR,TG/DTA,XRD,TEM,能谱等测试手段对YAG凝胶及SiC/YAG复合粉体进行表征;探讨YAG凝胶在SiC表面的包裹情况,分析热处理条件对SiC/YAG复合粉体性能的影响.结果表明,YAG凝胶呈网状结构,SiC颗粒嵌入在凝胶网络中;干凝胶在920℃左右已完全转变成YAG相,最终获得YAG粒径小、均匀分散的SiC/YAG复合粉体.","authors":[{"authorName":"郭兴忠","id":"84336568-4220-4971-95b3-9da39d3b4747","originalAuthorName":"郭兴忠"},{"authorName":"杨辉","id":"ec27fea4-ab99-4e31-a09e-ba134f1e3b9f","originalAuthorName":"杨辉"},{"authorName":"王建武","id":"3d30a334-b2b4-4e69-81af-c1e1ddc99b1d","originalAuthorName":"王建武"}],"doi":"","fpage":"55","id":"e437684e-0984-4bac-81cf-a6f4bfd93cc5","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"5a614770-5ea7-4945-8bd5-9310c81b9443","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"ee9ba5f9-020b-4743-83a3-b2551dc8e476","keyword":"碳化硅:YAG","originalKeyword":"碳化硅:YAG"}],"language":"zh","publisherId":"xyjsclygc2004z1016","title":"溶胶-凝胶法制备SiC/YAG复合粉体","volume":"33","year":"2004"},{"abstractinfo":"以正硅酸乙酯、钛酸丁酯、异丙醇铝和γ-缩水甘油醚氧丙基三甲氧基硅烷为先驱体,通过分步水解法制得SiO2-TiO2-Al2O3复合溶胶,利用提拉法在普通玻璃表面镀制无机-有机复合透明保护薄膜,通过各种测试方法,对SiO2-TiO2-Al2O3复合薄膜的结构和性质进行了分析,结果表明该薄膜具有致密、透明、耐磨擦等性能.由于铝、钛纳米氧化物颗粒的存在,使得硬度及耐磨擦性能比纯SiO2薄膜均有较大的提高.","authors":[{"authorName":"侯艳芳","id":"7f21099d-c79a-4e18-ad40-3a945a4acbe0","originalAuthorName":"侯艳芳"},{"authorName":"沈军","id":"a3beb542-4045-4fbf-be12-59266b5a80f1","originalAuthorName":"沈军"},{"authorName":"肖琨","id":"bf7751fa-2526-4e8c-9996-b193f06bc03f","originalAuthorName":"肖琨"},{"authorName":"沈波","id":"7f22e29a-10a1-4618-a4b7-25a6b6055639","originalAuthorName":"沈波"},{"authorName":"吴广明","id":"376ea53f-9d7a-4ec8-a5ef-418c30837f2e","originalAuthorName":"吴广明"},{"authorName":"周斌","id":"3a4a65b3-93dd-4d9a-b2cf-d08278ca0491","originalAuthorName":"周斌"},{"authorName":"翟继卫","id":"f78456ef-337e-45c9-b640-e1c68d2dbe7f","originalAuthorName":"翟继卫"},{"authorName":"倪星元","id":"fd5c4553-918c-4c66-ad4c-c09fbdb38907","originalAuthorName":"倪星元"}],"doi":"","fpage":"247","id":"dd082b45-0ed2-46e3-b4f4-01ce99f3a2dc","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c6b3ef8b-0a66-4e73-a0d9-fe080a43a610","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"a358d033-2ff6-4bac-a3ec-a25325780f39","keyword":"无机-有机复合","originalKeyword":"无机-有机复合"},{"id":"83045c7a-3c33-43d9-9b35-6704c08ed234","keyword":"透明保护薄膜","originalKeyword":"透明保护薄膜"},{"id":"b4399697-25fc-43dc-a5e2-c9a04c1c3919","keyword":"耐磨擦","originalKeyword":"耐磨擦"}],"language":"zh","publisherId":"gncl200402040","title":"溶胶-凝胶法制备纳米复合透明保护薄膜","volume":"35","year":"2004"},{"abstractinfo":"以硝酸铜和二钼酸铵为原料,采用溶胶-凝胶法制备了纳米MoCu复合粉体,研究了热处理工艺,溶液pH值,添加剂等对纳米粒子形貌及粒径的影响.结果表明,在600℃热处理的钼铜氧化物通过氢气还原之后可以得到粒径小于60 nm的纳米MoCu复合粉体;溶液中添加剂的用量影响微粒的粒径,当添加剂用量K为0.5时,能得到尺寸较小,粒度均匀的纳米粉体;不同酸度条件下所得粉体的粒径各不相同,当pH值在1~4之间变化时粒径随pH值的增大而增大,pH值取1较合适.","authors":[{"authorName":"亢占英","id":"fb315f71-16be-4290-b005-da3e45f7f06f","originalAuthorName":"亢占英"},{"authorName":"陈文革","id":"7aa9b873-51d2-4f11-b11a-5025e1afd924","originalAuthorName":"陈文革"},{"authorName":"丁秉钧","id":"9c6aa2f4-0e2b-462b-b8f2-9e45c8ae7487","originalAuthorName":"丁秉钧"}],"doi":"","fpage":"990","id":"ab970810-adff-482e-94d0-45daf7fee50e","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"8df27aaf-87ea-45ad-a013-0ff1c287e457","keyword":"MoCu","originalKeyword":"MoCu"},{"id":"12d2009b-357a-4fd4-8349-6e7c41752cdb","keyword":"复合粉体","originalKeyword":"复合粉体"},{"id":"df9e3ce0-c2dc-4a2e-9106-8250c8a792a4","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"6b4b242e-5141-4cf7-924f-e3b00e8de82a","keyword":"纳米粒子","originalKeyword":"纳米粒子"}],"language":"zh","publisherId":"xyjsclygc200506037","title":"溶胶-凝胶法制备纳米MoCu复合粉体","volume":"34","year":"2005"}],"totalpage":3751,"totalrecord":37505}