欢迎登录材料期刊网

材料期刊网

高级检索

利用热化学气相沉积法在负载不同厚度催化剂的硅纳米丝(SiNW)表面生长碳纳米管(CNTs),探讨了生长条件对所合成SiNW-CNT的结构和场发射特性的影响.这种类似树状的三维结构具有较高碳纳米管表面密度及降低的电场筛除效应等潜在优势.使用拉曼光谱( Raman)、电子显微镜(SEM)、透射电子显微镜(TEM)、能量扩散分光仪(EDS)分析了碳纳米管的结构性质,并在高真空下施加电场测得碳纳米管的场发射特性.结果表明:随硅纳米丝上负载催化剂镍膜厚度的变化,所合成碳纳米管的表面特性、结晶结构及功函数改变,导致电子发射难易程度的改变,进一步影响碳纳米管的场发射特性.

Carbon nanotubes (CNTs) were grown on a silicon nanowire substrate with Ni-catalyst layers of different thicknesses using thermal chemical vapor deposition.Scanning electron microscopy was used to observe the surface morphology,and Raman spectroscopy was used to investigate the structural changes in relation to the thicknesses of the catalyst deposited on the substrate.Field-emission characteristics of CNTs were also correlated with the catalyst thicknesses.The catalyst thickness was found to effectively change the field-emission characteristics of the CNTs.Obvious changes in the diameters,population density,and morphology of CNTs were found with differences in catalyst thickness.The fieldemission characteristics of CNTs were dependent on their diameter.

参考文献

[1] Baughman R H;Zakhidov A A;Heer W A .Carbon nanotubesthe route toward applications[J].Science,2002,297:787-792.
[2] A.A. Talin;K.A. Dean;J.E. Jaskie .Field emission displays: a critical review[J].Solid-State Electronics,2001(6):963-976.
[3] Jean-Marc Bonard;Hannes Kind;Thomas Stockli .Field emission from carbon nanotubes: the first five years[J].Solid-State Electronics,2001(6):893-914.
[4] Journet C;Maser W K;Bernier P et al.Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J].Nature,1997,388:756-758.
[5] Thess A;Lee R;Nikolaev P et al.Crystalline ropes of metallic carbon nanotubes[J].Science,1996,273:483-487.
[6] Ren Z F;Huang Z P;Xu J W et al.Synthesis oflarge arrays of well-aligned carbon nanotubes on glass[J].Science,1998,282:1105-1107.
[7] Li W Z;Xie S S;Qian L X et al.Large-scale synthesis of aligned carbon nanotubes[J].Science,1996,274:1701-1703.
[8] Iijima S .Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
[9] Bethune D S;Kiang C H;Devries M S et al.Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J].Nature,1993,363:605-607.
[10] Cheng HM.;Su G.;Pan HY.;He LL.;Sun X.;Dresselhaus MS.;Li F. .Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J].Applied physics letters,1998(25):3282-3284.
[11] Fan S;Chapline M G;Franklin N R et al.Self-oriented regular arrays of carbon nanotubes and their field emission properties[J].Science,1999,283:512-514.
[12] Chang CS.;Chattopadhyay S.;Chen LC.;Chen KH.;Chen CW.;Chen YF. Collazo R.;Sitar Z. .Band-gap dependence of field emission from one-dimensional nanostructures grown on n-type and p-type silicon substrates - art. no. 125322[J].Physical review, B. Condensed matter and materials physics,2003(12):5322-0.
[13] Y. Q. Fu;A. Colli;A. Fasoli;J. K. Luo;A. J. Hewitt;A. C. Ferrari;W. I. Milne .Deep reactive ion etching as a tool for nanostructure fabrication[J].Journal of Vacuum Science & Technology, B. Microelectronics and Nanometer Structures: Processing, Measurement and Phenomena,2009(3):1520-1526.
[14] M. Chhowalla;C. Ducati;N. L. Rupesinghe;K. B. K. Teo;G. A. J. Amaratunga .Field emission from short and stubby vertically aligned carbon nanotubes[J].Applied physics letters,2001(13):2079-2081.
[15] Jean-Marc Bonard;Mirko Croci;Christian Klinke;Ralph Kurt;Olivier Noury;Nicolas Weiss .Carbon nanotube films as electron field emitters[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(10):1715-1728.
[16] W.I.Milne;K.B.K.Teo;G.A..Amaratunga;P.egagneux;L.Gangloff;J.-P.Schnell;V.Semet;V.thien Binh;O.Groening .Carbon nanotubes as field emission sources[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2004(6):933-943.
[17] L. Nilsson;O. Groening;C. Emmenegger .Scanning field emission from patterned carbon nanotube films[J].Applied physics letters,2000(15):2071-2073.
[18] Yan HF.;Hang QL.;Yu DP.;Wang YP.;Xu J.;Xi ZH.;Feng SQ.;Xing YJ. .Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism[J].Chemical Physics Letters,2000(3-4):224-228.
[19] Shih-Fong Lee;Yung-Ping Chang;Li-Ying Lee .Plasma treatment effects on surface morphology and field emission characteristics of carbon nanotubes[J].Journal of Materials Science. Materials in Electronics,2009(9):851-857.
[20] Lee S F;Chang Y P;Lee L Y .The effects of annealing Ni catalyst in nitrogen-based gases on the surface morphology and fieldemission properties of thermal chemical vapor deposited carbon nanotubes[J].New Carbon Materials,2008,23(04):302-308.
[21] Padmakar D. Kichambare;Dali Qian;Elizabeth C. Dickey;Craig A. Grimes .Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(11):1903-1909.
[22] Eklund PC.;Jishi RA.;Holden JM. .VIBRATIONAL MODES OF CARBON NANOTUBES - SPECTROSCOPY AND THEORY[J].Carbon: An International Journal Sponsored by the American Carbon Society,1995(7):959-972.
[23] Gadzuk J W;Plummer E W .Field emission energy distributions (FEED)[J].Review on Modern Physics,1973,45:487-548.
[24] Kuttel Olivier M.;Groning O.;Emmenegger Ch.;Nilsson L.;Maillard E.;Diederich L. .Field emission from diamond, diamond-like and nanostructured carbon films[J].Carbon: An International Journal Sponsored by the American Carbon Society,1999(5):745-752.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%