欢迎登录材料期刊网

材料期刊网

高级检索

采用自行搭建的热重实验平台对798~973 K温度范围内温度对A3-3基体石墨的氧化行为进行研究,氧化剂为100 mL/min的空气。不同温度下石墨试样均被氧化至失重10%~15%。结果表明,基体石墨的氧化速率( OR)随着温度的升高显著提升,温度为973 K时基体石墨的OR约为798 K时的70倍。虽然973 K时氧气供给速率与平均碳消耗速率的比值仅为4.3,但石墨OR的Arrhenius曲线依然保持了很好的线性关系,表明该温度下基体石墨的氧化机理没有发生改变。在798-973 K温度范围内,A3-3基体石墨在空气中的氧化均处于化学区,其活化能为176 kJ/mol,Arrhenius氧化方程可描述为:OR=2.9673×108·exp(-21124.8/T),单位为wt%/min。与堆内的核级结构石墨相比,基体石墨的活化能相对较低,说明基体石墨在空气中更易被氧化,这主要跟基体石墨中含有未完全石墨化的树脂炭有关。

The effects of temperature on the oxidation behavior of the A3-3 matrix graphite ( MG) in the temperature range 798-973 K in air with a flow rate of 100 mL/min to burn-offs of 10-15 wt%, were investigated by a home-made thermo-gravimetric ex-perimental setup. The oxidation rate ( OR) increases significantly with the temperature. The OR at 973 K is over 70 times faster than at 798 K. The oxidation kinetics of A3-3 MG in air at temperatures up to 973 K is in the reaction control regime, where the activa-tion energy is 176 kJ/mol and the Arrhenius equation could be described as:OR=2. 967 3×108·exp(21 124. 8/T) wt%/min. The relatively lower activation energy of MG than that of structural nuclear graphite indicates that MG is more easily oxidized.

参考文献

[1] 周湘文;易子龙;卢振明;张杰;于溯源.球床式高温气冷堆堆内的石墨材料[J].炭素技术,2012(6):45-49.
[2] Rainer Moormann;Hans-Klemens Hinssen;Kerstin Kuehn.Oxidation behaviour of an HTR fuel element matrix graphite in oxygen compared to a standard nuclear graphite[J].Nuclear engineering and design,20043(3):281-284.
[3] Zhou Xiangwen;Lu Zhenming;Zhang Jie;Liu Bing;Zou Yanwen;Tang Chunhe;Tang Yaping.Preparation of spherical fuel elements for HTR-PM in INET[J].Nuclear engineering and design,2013Oct.(Oct.):456-461.
[4] Fuller L.;Okoh JM..KINETICS AND MECHANISMS OF THE REACTION OF AIR WITH NUCLEAR GRADE GRAPHITES - IG-110[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,19973(3):241-250.
[5] Kim ES;Lee KW;No HC.Analysis of geometrical effects on graphite oxidation through measurement of internal surface area[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,20061/2(1/2):174-180.
[6] Woong-Ki Choi;Byung-Joo Kim;Eung-Seon Kim;Se-Hwan Chi;Soo-Jin Park.Oxidation behavior of IG and NBG nuclear graphites[J].Nuclear engineering and design,20111(1):82-87.
[7] Contescu, CI;Azad, S;Miller, D;Lance, MJ;Baker, FS;Burchell, TD.Practical aspects for characterizing air oxidation of graphite[J].Journal of Nuclear Materials,20081/2(1/2):15-24.
[8] Lee, J.J.;Ghosh, T.K.;Loyalka, S.K..Oxidation rate of nuclear-grade graphite NBG-18 in the kinetic regime for VHTR air ingress accident scenarios[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,20131/3(1/3):77-87.
[9] Pappano, PJ;Burchell, TD;Hunn, JD;Trammell, MP.A novel approach to fabricating fuel compacts for the next generation nuclear plant (NGNP)[J].Journal of Nuclear Materials,20081/2(1/2):25-38.
[10] Zaghib K.;Kinoshita K.;Song X..Thermal analysis of the oxidation of natural graphite: isothermal kinetic studies[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,20011/2(1/2):57-64.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%