欢迎登录材料期刊网

材料期刊网

高级检索

Magnesium (Mg) and its alloys as a novel kind of biodegradable material have attracted much fundamental research and valuable exploration to develop its clinical application. Mg alloys degrade too fast at the early stage after implantation, thus commonly leading to some problems such as osteolysis, early fast mechanical loss, hydric bubble aggregation, gap formation between the implants and the tissue. Surface modification is one of the effective methods to control the degradation property of Mg alloys to adapt to the need of organism. Some coatings with bioactive elements have been developed, especially for the micro-arc oxidation coating, which has high adhesion strength and can be added with Ca, P, and Sr elements. Chemical deposition coating including bio-mimetic deposition coating, electro-deposition coating and chemical conversion coating can provide good anticorrosion property as well as better bioactivity with higher Ca and P content in the coating. From the biodegradation study, it can be seen that surface coating protected the Mg alloys at the early stage providing the Mg alloy substrate with lower degradation rate. The biocompatibility study showed that the surface modification could provide the cell and tissue stable and weak alkaline surface micro-environment adapting to the cell adhesion and tissue growth. The surface modification also decreased the mechanical loss at the early stage adapting to the load-bearing requirement at this stage. From the interface strength between Mg alloys implants and the surrounding tissue study, it can be seen that the surface modification improved the bio-adhesion of Mg alloys with the surrounding tissue, which is believed to be contributed to the tissue adaptability of the surface modification. Therefore, the surface modification adapts the biodegradable magnesium alloys to the need of biodegradation, biocompatibility and mechanical loss property. For the different clinical application, different surface modification methods can be provided to adapt to the clinical requirements for the Mg alloy implants.

参考文献

[1] B. Ratner, A. Hoffman, F. Schoen, J. Lemons. Biomaterials Science: An Introduction to Materials in Medicine. (third ed.)Elsevier (2013)
[2] D.A. Puleo, W.W. Huh. J. Appl.Biomater, 6(1995), pp. 109-116
[3] J.J. Jacobs, J.L. Gilbert, R.M. Urban.J. Bone Joint Surg. A, 80(1998), pp. 268-282
[4] M. Niinomi. Metall.Mater. Trans. A, 33(2002), pp. 477-486
[5] H. Hornberger, S. Virtanen, A.R. Boccaccini.Acta Biomater, 8(2012), pp. 2442-2455
[6] T. Boyce, J.M. Lane, S.D. Boden, J.C. Wang.Int. J. Spine Surg, 2(2008), pp. 55-61
[7] P. Liu, X. Pan, W. Yang, K. Cai, Y. Chen. Mater.Lett, 75(2012), pp. 118-121
[8] A. Zomorodian, M. Garcia, T. Moura e Silva, J. Fernandes, M. Fernandes, M. Montemor. Acta Biomater, 9(2013), pp. 8660-8670
[9] Y. Lu, L. Tan, H. Xiang, B. Zhang, K. Yang, Y. Li. J.Mater. Sci. Technol, 28(2012), pp. 636-641
[10] X. Gu, N. Li, W. Zhou, Y. Zheng, X. Zhao, Q. Cai, L. Ruan.Acta Biomater, 7(2011), pp. 1880-1889
[11] X. Lin, L. Tan, P. Wan, X. Yu, K. Yang, Z. Hu, Y. Li, W. Li. Surf.Coat. Technol, 232(2013), pp. 899-905
[12] J.A. Curran, T.W. Clyne.Surf. Coat. Technol, 199(2005), pp. 168-176
[13] R.F. Zhang, S.F. Zhang.Corros. Sci, 51(2009), pp. 2820-2825
[14] Z. Liu, W. Gao. Surf.Coat. Technol, 200(2006), pp. 5087-5093
[15] R.G. Hu, S. Zhang, J.F. Bu, C.J. Lin, G.L. Song.Prog. Org. Coat, 73(2012), pp. 129-141
[16] T.D. Luckey, B. Venugopal.Metal Toxicity in Mammals. Plenum Press, New York (1977)
[17] X. Lin, L. Tan, Q. Zhang, K. Yang, Z. Hu, J. Qiu, Y. Cai.Acta Biomater, 9(2013), pp. 8631-8642
[18] X. Xu, P. Lu, M. Guo, M. Fang. Appl.Surf. Sci, 256(2010), pp. 2367-2371
[19] P. Wan, X. Lin, L. Tan, L. Li, W.R. Li, K. Yang. Appl.Surf. Sci, 282(2013), pp. 186-194
[20] J. Liang, P.B. Srinivasan, C. Blawert, M. Stormer, W. Dietzel. Electrochim.Acta, 54(2009), pp. 3842-3850
[21] J. Liang, P.B. Srinivasan, C. Blawert, W. Dietzel. Corros.Sci, 52(2010), pp. 540-547
[22] C.L. Chu, X. Han, F. Xue, J. Bai, P.K. Chu.Appl. Surf. Sci, 271(2013), pp. 271-275
[23] J. Gan, L. Tan, K. Yang, Q. Zhang, X. Fan, Y. Li, W. Li. J.Mater. Sci. Mater. Med, 24(2013), pp. 889-901
[24] W. Wang, P. Wan, C. Liu, L. Tan, L. Li, K. Yang. Regen.Biomater, 2(2015), pp. 107-118
[25] X.N. Gu, Y.F. Zheng, Q.X. Lan, Y. Cheng, Z.X. Zhang, T.F. Xi, D.Y. Zhang.Biomed. Mater, 4(2009), p. 044109
[26] H.M. Wong, K.M.K.Yeung, K.O. Lam, V. Tam, P.K. Chu, K.D.K. Luk, K.M.C. Cheung. Biomaterials, 31(2010), pp. 2084-2096
[27] Y. Song, S. Zhang, J. Li, C. Zhao, X. Zhang.Acta Biomater, 6(2010), pp. 1736-1742
[28] X.N. Gu, W. Zheng, Y. Cheng, Y.F. Zheng.Acta Biomater, 5(2009), pp. 2790-2799
[29] K.Y. Chiu, M.H. Wong, F.T. Cheng, H.C. Man.Surf. Coat. Technol, 202(2007), pp. 590-598
[30] X.N. Gu, N. Li, W.R. Zhou, Y.F. Zheng, X. Zhao, Q.Z. Cai, L.Q. Ruan.Acta Biomater, 7(2011), pp. 1880-1889
[31] J.N. Li, Y. Song, S.X. Zhang, C.L. Zhao, F. Zhang, X.N. Zhang, L. Cao, Q.M. Fan, T.T. Tang.Biomaterials, 31(2010), pp. 5782-5788
[32] R. Rettig, S. Virtanen. J.Biomed. Mater. Res. A, 85(2009), pp. 359-369
[33] X.B. Chen, N. Birbilis, T.B. Abbott.Corros. Sci, 53(2011), pp. 2263-2268
[34] Q. Wang, L. Tan, W. Xu, B. Zhang, K. Yang. Mater.Sci. Eng. B, 176(2011), pp. 1718-1726
[35] P. Wan, X. Qiu, L. Tan, X. Fan, K. Yang. Ceram.Int, 41(2015), pp. 787-796
[36] M. Tomozawa, S. Hiromoto.Acta Mater, 59(2011), pp. 355-363
[37] Y.W. Song, D.Y. Shan, E.H. Han.Mater. Lett, 62(2008), pp. 3276-3279
[38] S. Zhang, Y.S. Wang, X.T. Zeng, K. Cheng, M. Qian, D.E. Sun, W.J. Weng, W.Y. Chia.Eng. Fract. Mech, 74(2007), pp. 1884-1893
[39] X. Qiu, P. Wan, L.L. Tan, X.M. Fan, K. Yang. Mater.Sci. Eng. C, 36(2014), pp. 65-76
[40] H.S. Ryu, K.S. Hong, J.K. Lee, D.J. Kim, J.H. Lee, B.S. Chang, D.H. Lee, C.K. Lee, S.S. Chung.Biomaterials, 25(2004), pp. 393-401
[41] C.M. Mardziah, I. Sopyan, S. Ramesh.Trends Biomater. Artif. Organs, 23(2009), pp. 105-113
[42] E. Thian, J. Huang, S. Best, Z. Barber, W. Bonfield. J.Biomed. Mater. Res. B, 76(2006), pp. 326-333
[43] L. Tan, X. Yu, P. Wan, K. Yang. J.Mater. Sci. Technol, 29(2013), pp. 503-513
[44] F. Witte, J. Reifenrath, P.P. Mueller, H.A. Crostack, J. Nellesen, F.W. Bach, D. Bormann, M. Rudert. Mat.-wiss. U. Werkstofftech, 37(2006), pp. 504-508
[45] G. Song. Corros.Sci, 49(2007), pp. 1696-1701
[46] M. Carboneras, B.T.Peréz-Maceda, J.A. del Valle, M.C. García-Alonso, R.M. Lozano, M.L. Escudero
[47] Mater. Lett, 65(2011), pp. 3020-3023
[48] J. Han, P. Wan, Y. Ge, X. Fan, L. Tan, J. Li, K. Yang. Mater.Sci. Eng. C, 58(2016), pp. 799-811
[49] F. Witte.Acta Biomater, 6(2010), pp. 1680-1692
[50] C.L. Peters, J.L. Hines, K.N. Bachus, M.A. Craig, R.D. Bloebaum. J. Biomed. Mater.Res. A, 76(2006), pp. 456-462
[51] H.R. Bakhsheshi-Rada, E. Hamzah, M.R. Abdul-Kadir, M. Daroonparvar, M. Medraj. Vacuum, 119(2015), pp. 95-98
[52] S. Shen, S. Cai, G. Xu, Y. Li, T. Zhang, M. Zhang. Mater.Des, 86(2015), pp. 610-615
[53] L. Tan, Q. Wang, X. Lin, P. Wan, G. Zhang, Q. Zhang, K. Yang.Acta Biomater, 10(2014), pp. 2333-2340
[54] S. Chen, S. Guan, W. Li, H. Wang, J. Chen, Y. Wang, H. Wang. J.Biomed. Mater. Res. B, 100B(2012), pp. 533-543
[55] F. Witte, J. Fischer, J. Nellesen, C. Vogt, J. Vogt, T. Donath, F. Beckmann.Acta Biomater, 6(2010), pp. 1792-1799
[56] T.P. Rucdi, W.M. Murphy.AO Principle of Fracture Management. AO Publishing, Dübendorf, Switzerland(2002), pp. 13-14
[57] S.T. Xu, B.F. Ge, Y.K. Xu.Pratical Orthopaedics. (third ed.)Military Medical Press, Beijing, China (2005)
[58] J. Niu, G. Yuan, Y. Liao, L. Mao, J. Zhang, Y. Wang, F. Huang, Y. Jiang, Y. He, W. Ding. Mater.Sci. Eng. C, 33(2013), pp. 4833-4841
[59] D. Zhao, S. Huang, F. Lu, B. Wang, L. Yang, L. Qin, K. Yang, Y.D. Li, W.R. Li, W. Wang.Biomaterials, 81(2016), pp. 84-92
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%