欢迎登录材料期刊网

材料期刊网

高级检索

通过CR-39核径迹探测器对471 AMeV 56Fe和400 AMeV 20Ne诱发Al,C和CH2靶反应的弹核碎裂反应截面及出射角度进行了测量,并利用改进的量子分子动力学(ImQMD)模型和描述统计衰变的GEMINI模型对实验结果进行了分析和讨论。实验结果表明,总反应截面与弹核的能量无关,但随着靶核质量的增加而增加。这与其他的实验结果以及Bradt-Peters的半经验理论公式所得结果一致。理论计算和实验测量结果中,分截面出现了明显的奇偶效应。理论计算结果表明,奇偶效应主要产生于受激碎块的衰变过程,其中对效应起着重要作用,而且,主要形成于擦边碰撞的反应中且多来自于同位旋为TZ=0,±0.5的弹核碎块的贡献。产生碎块的同位素分布与弹核的种类有关,与入射能量和靶核的种类没有太大依赖性,其较小的偏转角大部分来自于擦边碰撞产生的较重的类弹碎块的贡献。

10.11804/NuclPhysRev.30.02.107

参考文献

[1] CUMMINGS J R, BINNS W R, GARRARD T L,et al. Phys Rev C,1990,42:2508.
[2] WEBBER W R, KISH J C, SCHRIER D A. Phys Rev C,1990,41:547.
[3] PURI R K, OHTSUKA N, LEHMANN E, et al. Nucl Phys A,1994,575:733.
[4] GOLOVCHENKO A N, SIHVER L, OTA S, et al. Radiat Meas,2010,45:856.
[5] GAUTAM S, CHUGH R, SOOD A D, et al. J Phys G:Nul Part Phys,2010,37:085102.
[6] PETTI P L, LENNOX A J. Annu Rev Nucl Part Sci,1994,44:155.
[7] AMALDI U. Nucl Phys A,2005,751:409.
[8] WILSON J W, THIBEAULT S A, CUCINOTTA F A, et al. Radiat Environ Biophys,1995,34:217.
[9] CHEN C X, ALBERGO S, CACCIA Z, et al. Phys Rev C,1994,49:3200.
[10] SUMMERER K, BLANK B. Phys Rev C,2000,61:034607.
[11] NILSEN B S, WADDINGTON C J, CUMMINGS J R, et al. Phys Rev C,1995,52:3277.
[12] SILBERBERG R, TSAO C H. Phys Rep,1990,191:351.
[13] TSAO C H, SILBERBERG R, BARGHOUTY A F, et al. Phys Rev C,1993,47:1257.
[14] SIHVER L, TSAO C H, SILBERBERG R, et al. Phys Rev C,1993,47:1225.
[15] WILSON J W, TRIPATHI R K, CUCINOTTA F A, et al. NUCFRG2:An Evaluation of Semiempirical Nuclear Fragmen-taion Database,1995, NASATP:3533.
[16] CUCINOTTA F A, WILSON J W, TRIPATHI R K, et al. Adv S-pace Res,1998,22:533.
[17] KRUSE H, JACAK B V, ST ¨OCKER H. Phys Rev Lett,1985,54:289.
[18] MOLITORIS J J, ST ¨OCKER H. Phys Rev C,1985,32:346.
[19] ONO A, HORIUCHI H, MARUYAMA T, et al. Phys Rev Lett,1992,68:2898.
[20] FELDMEIER H. Nucl Phys A,1990,515:147.
[21] AICHELIN J. Phys Rep,1991,202:233.
[22] VERMANI Y K, DHAWAN J K, GOYAL S, et al. J Phys G:Nucl Part Phys,2010,37:015105.
[23] WANG N, LI Z X, WU X Z. Phys Rev C,2002,65:064608.
[24] WANG N, LI Z X, WU X Z, et al. Phys Rev C,2004,69:034608.
[25] CHARITY R J, JING K X, BOWMAN D R, et al. Nucl Phys A,1990,511:59.
[26] OTA S, KODAIRAA S, YASUDA N, et al. Radiat Meas,2008,43:S195.
[27] CECCHINI S, CHIARUSI T, GIACOMELLI G, et al. Nucl Phys A,2008,807:206.
[28] BRADT H L, PETERS B. Phys Rev,1950,77:54.
[29] ZEITLIN C, HEILBRONN L, MILLER J, et al. Phys Rev C,1997,56:388.
[30] WEBBER W R, BRAUTIGAM D A. Astrophys J,1982,260:894.
[31] FERRANDO P, WEBBER W R, GORET P, et al. Phys Rev C,1988,37:1490.
[32] WANG L C, ZHANG D H, YAN S W, et al. Acta Physica Polonica B,2012,43:1769.
[33] WEBBER W R, KISH J C,SCHRIER D A. Phys Rev C,1990,41:520.
[34] KOX S, GAMP A, PERRIN C, et al. Phys Rev C,1987,35:1678.
[35] ZEITLIN C, FUKUMURA A, HEIBRONN L, et al. Phys Rev C,2001,64:024902.
[36] ZEITLIN C, MILLER J, GUETERSLOH S, et al. Phys Rev C,2011,83:034909.
[37] CHENG J X, ZHANG D H, YAN S W, et al. Chinese Physics C,2012,36:37.
[38] WESTFALL G D, WILLSON L W, LINDSTROM P J, et al. Phys Rev C,1979,19:1309.
[39] TIAN J L, WU X Z, ZHAO K, et al. Phys Rev C,2008,77:064603.
[40] OU L, LI Z X, WU X Z. Phys Rev C,2008,78:044609.
[41] CHARITY R J, BOWMAN D R, LIU Z H, et al. Nucl Phys A,1988,476:516.
[42] CHARITY R J, MCMAHAN M A, WOZNIAK G J, et al. Nucl Phys A,1988,483:371.
[43] VILLAGRASA-CANTON C, BOUDARD A, DUCRET J E, et al. Phys Rev C,2007,75:044603.
[44] CHENG J X, JIANG X, YAN S W, et al. J Phys G:Nucl Part Phys,2012,37:015105.
[45] NAPOLITANI P, REJMUND F, TASSAN-GOT L, et al. Int J Mod Phys E,2004,13:333.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%