欢迎登录材料期刊网

材料期刊网

高级检索

在慢速高电荷态离子与氦原子碰撞的双电子转移过程中,借用虚态图像来描绘转移电子间的强关联特性;根据分子库仑过垒模型纳入反应Q值,定义势能参量ω来区分碰撞系统并度量双电子转移过程。对照之前的实验数据,清晰地显示当ω61和ω>2时,纯双电子俘获或自电离双俘获分别占优。澄清了碰撞系统的本质区别在于散射离子上两个转移电子的平均激发能和平均束缚能的相对比率。

We borrow the concept of virtual state to characterize the strong interacting feature of the two transferred electrons in slow highly charged ions with helium collisions. Consequently, a potential parameterωis defined to distinguish the collision systems and to scale the double-electron transfer pro-cesses. The Q-value is taken into account according to the classical over-the-barrier model. Comparing with our previous experimental data, it is clearly shown that the true double capture or the autoionizing double capture dominates when ω6 1 or ω>2, respectively. We clarify that the distinction of the collision systems is essentially the ratio between the average excitation energy and the average binding energy of the two transferred electrons at the scattered ion.

参考文献

[1] RYUFUKU H, SASAKI K, WATANABE T. Phys Rev A, 1980, 21:745.
[2] B ′AR ′ANY A, ASTNER G, CEDERQUIST H, et al. Nucl Instr Meth B, 1985, 9:397.
[3] NIEHAUS A. J Phys B, 1986, 19:2925.
[4] JANEV R K, WINTER H. Phys Rep, 1985, 117:265.
[5] FRITSCH W, LIN C D. Phys Rep, 1991, 202:1.
[6] KRONEISEN O J, L ¨UDDE H J, KIRCHNER T, et al. J Phys A, 1999, 32:2141.
[7] STOLTERFOHT N, HAVENER C C, PHANEUF R A, et al. Phys Rev Lett, 1986, 57:74.
[8] MACK M, NIJLAND J H, STRATEN P V D, et al. Phys Rev A, 1989, 39:3846.
[9] STOLTERFOHT N, SOMMER K, SWENSON J K, et al. Phys Rev A, 1990, 42:5396.
[10] HOLT R A, PRIOR M H, RANDALL K L, et al. Phys Rev A, 1991, 43:607.
[11] FREMONT F, SOMMER K, LECLER D, et al. Phys Rev A, 1992, 46:222.
[12] PRIOR M H, HOLT R A, SCHNEIDER D, et al. Phys Rev A, 1993, 48:1964.
[13] FREMONT F, MERABET H, CHESNEL J Y, et al. Phys Rev A, 1994, 50:3117.
[14] CHESNEL J Y, MERABET H, FR MONT F, et al. Phys Rev A, 1996, 53:4198.
[15] CHESNEL J Y, MERABET H, SULIK B, et al. Phys Rev A, 1998, 58:2935.
[16] BLIMAN S, BRUCH R, CORNILLE M, et al. Phys Rev A, 2002, 66:052707.
[17] BODUCH P, CHANTEPIE M, HENNECART D, et al. J Phys B, 1989, 22:L377.
[18] MARTIN S, BERNARD J, CHEN L, et al. Phys Rev A, 1995, 52:1218.
[19] LANGEREIS A, NORDGREN J, BLIMAN S, et al. Phys Rev A, 1999, 60:2917.
[20] YU D, CAI X, LU R, et al. Chin Phys Lett, 2005, 22:1398.
[21] YU D, CAI X, LU R, et al. Phys Rev A, 2007, 76:022710.
[22] SAKAUE H A, DANJO A, HOSAKA K, et al. J Phys B, 2004, 37:403.
[23] L ¨U Y, CHEN X, CAO Z, et al. Act Phys Sin, 2010, 59(06):3892.(in Chinese)(吕瑛,陈熙萌,曹柱荣,等. 物理学报, 2010, 59(06):3892)
[24] KROK F, TOLSTIKHINA I Y, SAKAUE H A, et al. Phys Rev A, 1997, 56:4692.
[25] LIN C D. Phys Rev Lett, 1983, 51:1348.
[26] LIN C D. Adv At Mol Phys, 1986, 22:77.
[27] LIN C D, WATANABE S. Phys Rev A, 1987, 35:4499.
[28] BACHAU H, RONCIN P, HAREL C. J Phys B, 1992, 25:L109.
[29] RONCIN P, GABORIAUD M N, BARAT M, et al. J Phys B, 1993, 26:4181.
[30] SANCHEZ I, BACHAU H. J Phys B, 1995, 28:795.
[31] CAO Z, YU D, YANG W, et al. J At Mol Phys, 2004(Suppl):0135-04.(in Chinese)(曹柱荣,于得洋,扬威,等.原子与分子物理学报, 2004(增刊):0135-04.)
[32] CEDERQUIST H. Z Phys D, 1991, 21:6.
[33] CEDERQUIST H, ANDERSSON H, BEEBE E, et al. Phys Rev A, 1992, 46:2592.
[34] LU R, YU D, SHAO C, et al. Nucl Instr Meth B, 2010, 268:2592.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%