欢迎登录材料期刊网

材料期刊网

高级检索

加速器驱动次临界系统(ADS)液态Pb-Bi散裂靶的设计中,需要可靠的理论计算工具精确地预言几个GeV能量范围的质子引起的散裂反应产生的各种粒子和核素。利用蒙特卡罗模拟软件包Geant4计算研究了800 MeV至3 GeV质子入射铅、铋材料引起的中子产生双微分截面。比较了Geant4不同物理模型得到的模拟结果与现有的实验数据。其中,Geant4的QGSP BERT和QGSP INCL ABLA物理模型模拟结果很好地再现了实验数据。本工作证实了Geant4蒙特卡罗模拟软件包适合用于能量高达3 GeV的质子入射铅、铋引起的中子产生双微分截面的模拟计算。

A detailed design of the liquid Pb-Bi spallation target of the Accelerator Driven Systems (ADS) requires powerful and reliable computational tools that can accurately predict particles and nuclides production by the proton induced spallation reactions in the energy range of a few GeV. In this paper, the neutron production double-differential cross sections for Pb and Bi target materials at incident proton kinetic energies between 800 MeV and 3 GeV are studied by calculations with Monte Carlo simulation package Geant4. The simulated results of Geant4 with several physics models are compared with available experimental data. The simulated results generated by QGSP BERT and QGSP INCL ABLA physics models of Geant4 well reproduce the available experimental data. The present results validated that Geant4 Monte Carlo simulation package is suitable for simulations of neutron production double-differential cross sections of proton induced reaction on Pb and Bi targets in the incident energy range up to 3 GeV.

参考文献

[1] SLOWINSKI B. Applied Energy, 2003, 75:129.
[2] DING Dazhao, FU Shinian. Modern Physics, 2001, 13:20.(in Chinese)(丁大钊, 傅世年. 现代物理知识, 2001, 13:20.)
[3] MICHEL R, LEYA I, BORGES L. Nucl Instr and Meth B, 1996, 113:434.
[4] KAPOOR S S. Pramana Journal of Physics, 2002, 59:941.
[5] IKEDA Y. Journal of Nuclear Science and Technology, 2002, 2:13.
[6] WAN Junsheng, ZHANG Ying, ZHANG Lixing, et al. Chi-nese Journal of Computational Physics, 2003, 20:408.(in Chinese)(万俊生, 张颖, 张利兴, 等. 计算物理, 2003, 20:408.)
[7] CUGNON J, VOLENT C, VUILLIER S. Nuclear Physics A, 1997, 620:475.
[8] AICHELIN J, PEILERT G, BOHNET A, et al. Physics Review C, 1988, 37:2451.
[9] COLEMAN W A, WAMSTRONG T W. ORNL-4606, 1970.
[10] BRIESMEISTER J F(Eds.). LA-12625, 1993.
[11] AGOSTINELLI S, ALLISON J, AMAKO K, et al. Nucl Instr and Meth A, 2003, 506:250.
[12] ALLISON J, AMAKO K, APOSTOLAKIS J, et al. IEEE Transactions on Nuclear Science, 2006, 53:270.
[13] FASSO A, FERRARI A, RANFIT J, et al. CERN-2005-10, INFN/TC 05/11, SLAC-R-773, 2005.
[14] FASSO A, FERRARI A, ROESLER S, et al. Comput-ing in High Energy and Nuclear Physics 2003 Conference(CHEP2003)[C]. La Jolla, CA, USA, 24-28 March 2003(paper MOMT005), eConf C0303241, 2003, arXiv:hep-ph/0306267.
[15] SATOH D, SHIGYO N, ISHIBASHI K, et al. Journal of Nuclear Science and Technology, 2003, 40:283.
[16] MMEIER M M, AMIAN W B, GOULDING C A, et al. Nuclear Science and Engineering, 1989, 102:310.
[17] AMIAN W B, BYRD R C, CLARK D A, et al. Nuclear Science and Engineering, 1992, 112:78.
[18] STAMER S, SCOBEL W, AMIAN W B, et al. Physics Review C, 1993, 47:1647-1658.
[19] NAKAMOTO T, ISHIBASHI K, MATSUFUJI N, et al. Nuclear Science and Technology, 1995, 32:827.
[20] ISHIBASHI K, TAKADA H, NAKAMOTO T, et al. Nu-clear Science and Technology, 1997, 34:529.
[21] MEIGO S, TAKADA H, CHIBA S, et al. Nucl Instr and Meth A, 1999, 431:521.
[22] LEDOUX X, BORNE F, BOUDARD A, et al. Physical Review Letters, 1999, 82:4412.
[23] TREBUKHOVSKY Y V, TITARENKO Y E, BATYAEV V F, et al. Physics of Atomic Nuclei, 2005, 68:3.
[24] YUREVICH V I, YAKOVLEV R M, VASSILKOV R G, et al. Nuclear Instruments and Methods in Physics Research A, 2006, 562:747.
[25] PRITYCHENKO Boris, EXFOR Experimental Nu-clear Reaction Data Retrievals [EB/OL]. [2013-03-28]. http://www.nndc.bnl.gov/exfor/exfor00.htm
[26] Geant4 Collaboration, Physics Reference Manual [EB/OL]. [2013-03-28]. http://geant4.cern.ch/support/userdocuments.shtml
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%