欢迎登录材料期刊网

材料期刊网

高级检索

用于铝合金的集成计算材料工程是将微观(10-10~10-8 m)、细观(10-8~10-4 m)、介观(10-4~10-2 m)和宏观(10-2~10 m)等多尺度计算模拟和关键实验集成到铝合金设计开发的全过程中,通过成分-工艺-结构-性能的集成化,把铝合金的研发由传统经验式提升到以组织演化及其与性能相关性为基础的科学设计上,从而大大加快其研发速度,降低研发成本。本文详细阐述了原子尺度模拟、相图计算、相场、元胞自动机和有限元等计算模拟方法及微结构表征和性能测定的实验方法,论述了其在铝合金研发中所发挥的具体作用。基于集成计算材料工程,提出了从用户需要、设计制备和工业生产3个层面研发铝合金的具体框架。通过2个应用实例,展示了集成计算材料工程在铝合金研发中的强大功能,这也为新型铝合金及其它新材料的设计和开发提供了新模式。

The ICME ( Integrated Computational Materials Engineering) for aluminum alloys was applied to combine key experiments with multi-scale numerical simulations from nano ( 10 -10-10 -8 m ) to micro ( 10 -8-10 -4 m ) to meso ( 10 -4-10 -2 m ) and to macro (10 -2-10 m) during the whole R&D (research and development) process of aluminum alloys. Using integrated analysis of the compo-sition-processing-structure-properties, the methodology for developing aluminum alloys was promoted from trial and error to scientific design, SO the R & D of aluminum alloys was significantly speed up and the cost was reduced. In this paper, multi-scale simulation approaches including Ab-initio, CALPHAD (CALculation of PHAse Diagram), phase field, and finite element method together with experimental methods characterizing structure and properties are elaborated. The function of each method in the R&D of aluminum al-loys is carefully discussed. Based on ICME, the framework for R&D of aluminum alloys, involving end-user demand, product design and industrial design, is established. Two application examples are presented to describe the important role of ICME during the devel-opment stage of aluminum alloys, which provides an innovative pattern for R & D of advanced aluminum alloys.

参考文献

[1] 王祝堂.车用铝市场前景广大[J].世界有色金属,2010(12):70-71.
[2] 张新明;刘胜胆.航空铝合金及其材料加工[J].中国材料进展,2013(1):39-55.
[3] 朱正锋;张国荣;周斌;章正晓.铝合金在轨道交通业的应用与展望[J].铁道机车车辆工人,2006(1):26-29.
[4] Gerard Paul M. Leyson;William A. Curtin;Louis G. Hector Jr.Quantitative prediction of solute strengthening in aluminium alloys[J].Nature materials,20109(9):750-755.
[5] Chen JH;Costan E;van Huis MA;Xu Q;Zandbergen HW.Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys[J].Science,20065772(5772):416-419.
[6] Per Harald Ninive;Are Strandlie;Sverre Gulbrandsen-Dahl.Detailed atomistic insight into the β" phase in Al-Mg-Si alloys[J].Acta materialia,2014:126-134.
[7] Andersson JO.;Helander T.;Hoglund LH.;Shi PF.;Sundman B..THERMO-CALC & DICTRA, computational tools for materials science[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20022(2):273-312.
[8] Chen SL.;Daniel S.;Zhang F.;Chang YA.;Yan XY.;Xie FY.;Schmid-Fetzer R.;Oates WA..The PANDAT software package and its applications[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20022(2):175-188.
[9] Bale C.;Chartrand P.;Degterov SA.;Eriksson G.;Hack K.;Ben Mahfoud R. Melancon J.;Pelton AD.;Petersen S..FactSage thermochemical software and databases[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20022(2):189-228.
[10] 张利军 .Al-Cu-Fe-Mn-Ni体系合金的相图热力学、扩散及微观结构演变模拟研究[D].中南大学,2010.
[11] 孙伟华 .Al合金中MN-Ni-B,Cu-MN-Ni,Cu-Ni-Si相图研究及Al合金凝固和时效相场模拟[D].中南大学,2013.
[12] Kim SG.;Suzuki T.;Kim WT..Phase-field model for binary alloys[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,19996 Pt.b(6 Pt.b):7186-7197.
[13] Steinbach I.;Nestler B.;Seesselberg M.;Prieler R.;Schmitz GJ.;Rezende JLL.;Pezzolla F..A PHASE FIELD CONCEPT FOR MULTIPHASE SYSTEMS[J].Physica, D. Nonlinear phenomena,19963(3):135-147.
[14] Ingo Steinbach;Lijun Zhang;Mathis Plapp.Phase-field model with finite interface dissipation[J].Acta materialia,20126/7(6/7):2689-2701.
[15] Anil Saigal;Edwin R. Fuller Jr..Analysis of stresses in aluminum-silicon alloys[J].Computational Materials Science,20011(1):149-158.
[16] X.H. Hu;M. Jain;D.S. Wilkinson.Microstructure-based finite element analysis of strain localization behavior in AA5754 aluminum sheet[J].Acta materialia,200813(13):3187-3201.
[17] A.K. Mukhopadhyay;A. Kumar;S. Raveendra.Development of grain structure during superplastic deformation of an Al-Zn-Mg-Cu-Zr alloy containing Sc[J].Scripta materialia,20115(5):386-389.
[18] Tomo Ogura;Shoichi Hirosawa;Alfred Cerezo;Tatsuo Sato.Atom probe tomography of nanoscale microstructures within precipitate free zones in Al–Zn–Mg(–Ag) alloys[J].Acta materialia,201017(17):5714-5723.
[19] Dixit M;Mishra RS;Sankaran KK.Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):163-172.
[20] Zander, Daniela;Schnatterer, Christian;Altenbach, Christoph;Chaineux, Veronika.Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires[J].Materials & design,2015Oct.15(Oct.15):49-59.
[21] Yang, Wenchao;Ji, Shouxun;Li, Zhou;Wang, Mingpu.Grain boundary precipitation induced by grain crystallographic misorientations in an extruded Al-Mg-Si-Cu alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2015:27-30.
[22] Gang Sha;Lan Yao;Xiaozhou Liao.Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy[J].Ultramicroscopy,20116(6):500-505.
[23] Du, Y.;Liu, S.;Zhang, L.;Xu, H.;Zhao, D.;Wang, A.;Zhou, L..An overview on phase equilibria and thermodynamic modeling in multicomponent Al alloys: Focusing on the AlCuFeMgMnNiSiZn system[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20113(3):427-445.
[24] 李春生;刘海鸥;赫微;郝志刚;赵涛;张雷.铝合金熔体的粘度及其影响因素[J].轻合金加工技术,2005(10):22-25.
[25] 王川;陈立佳;车欣;李锋.时效态Al-4.5Cu-0.6Mg(-0.3Si)合金的组织与力学性能[J].材料热处理学报,2015(6):36-40.
[26] X.-G. Lu;M. Selleby;B. Sundman.Theoretical modeling of molar volume and thermal expansion[J].Acta materialia,20058(8):2259-2272.
[27] Hallstedt B.Molar volumes of Al, Li, Mg and Si[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20072(2):292-302.
[28] Zhu, Jun;Zhang, Chuan;Cao, Weisheng;Chen, Shuanglin;Zhang, Fan;Park, Joon Sik;Yi, Seonghoon.Molar Volume Modeling of Ti-Al-Nb and Ti-Al-Mo Ternary Systems[J].JOM,20158(8):1881-1885.
[29] Zhang, Fan;Du, Yong;Liu, Shuhong;Jie, Wanqi.Modeling of the viscosity in the AL-Cu-Mg-Si system: Database construction[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,2015:79-86.
[30] Wei, Ming;Tang, Ying;Zhang, Lijun;Sun, Weihua;Du, Yong.Phase-Field Simulation of Microstructure Evolution in Industrial A2214 Alloy During Solidification[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20157(7):3182-3191.
[31] A. W. Zhu;B. M. Gable;G. J. Shiflet;E. A. Starke Jr..The intelligent design of age hardenable wrought aluminum alloys[J].Advanced Engineering Materials,200211(11):839-846.
[32] Rosalie, JM;Bourgeois, L;Muddle, BC.Precipitate assemblies formed on dislocation loops in aluminium-silver-copper alloys[J].Philosophical magazine: structure and properties of condensed matter,200925(25):2195-2211.
[33] Gable BM;Zhu AW;Shiflet GJ;Starke EA.Assessment of the aluminum-rich corner of the Al-Cu-Mg-(Ag) phase diagram[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20082(2):256-267.
[34] B.M. GABLE;G.J. SHIFLET;E.A. STARKE Jr..Alloy Development for the Enhanced Stability of OMEGA Precipitates in Al-Cu-Mg-Ag Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20064(4):1091-1105.
[35] Keith E. Knipling;David C. Dunand;David N. Seidman.Criteria for developing castable, creep-resistant aluminum-based alloys - A review[J].Zeitschrift fur Metallkunde,20063(3):246-265.
[36] C. Ravi;C. Wolverton.Comparison of Thermodynamic Databases for 3xx and 6xxx Aluminum Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20058(8):2013-2024.
[37] A. Zhu;B. M. Gable;G. J. Shiflet.Trace element effects on precipitation in Al-Cu-Mg-(Ag, Si) alloys: a computational analysis[J].Acta materialia,200412(12):3671-3679.
[38] James C. Williams;Edgar A. Starke Jr..Progress in structural materials for aerospace systems[J].Acta materialia,200319(19):5775-5799.
[39] L.Reich;M.Murayama;K.Hono.Evolution of Ω phase in an Al-Cu-Mg-Ag alloy- a three-dimensional atom probe study[J].Acta materialia,199817(17):6053-6062.
[40] C.R. HUTCHINSON;X. FAN;S.J. PENNYCOOK.ON THE ORIGIN OF THE HIGH COARSENING RESISTANCE OF #OMEGA# PLATES IN Al-Cu-Mg-Ag ALLOYS[J].Acta materialia,200114(14):2827-2841.
[41] A. W. ZHU;E. A. STARKE JR.STRENGTHENING EFFECT OF UNSHEARABLE PARTICLES OF FINITE SIZE: A COMPUTER EXPERIMENTAL STUDY[J].Acta materialia,199911(11):3263-3269.
[42] S.P. RINGER;B.C. MUDDLE;I.J. POLMEAR.Effects of Cold Work on Precipitation in Al-Cu-Mg-(Ag) Cu-Li(Mg-Ag) Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,19957(7):1659-1671.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%